Am J Perinatol 2014; 31(10): 829-836
DOI: 10.1055/s-0033-1363501
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

In Utero Stem Cell Transplantation for Radical Treatment of Osteogenesis Imperfecta: Perspectives and Controversies

Mariam Taher Mohamed Amin
1   Womanʼs Health Center, Assiut University, Assiut, Egypt
,
Sherif Abd-Elkarim Mohammed Shazly
1   Womanʼs Health Center, Assiut University, Assiut, Egypt
› Author Affiliations
Further Information

Publication History

01 August 2013

09 November 2013

Publication Date:
17 December 2013 (online)

Abstract

Osteogenesis imperfecta (OI) is a lethal hereditary connective tissue disease that affects the synthesis of type I collagen. Current treatment options including surgical, physical, and medical treatment help to reduce pain, deformities, and rate of bone fracture. However, these choices are insufficient and are associated with many adverse effects. The development of stem cell therapy allows scientists to consider this option for radical treatment of many genetic diseases including OI. In utero stem cell transplantation provides a better opportunity for early prenatal intervention while the fetus is preimmune and before any permanent damage occurs. Few animal and human trials for treatment of OI have been published, and the results were promising but still controversial. Our objective is to review the available evidence and discuss the points of controversy including the parameters of treatment success and postnatal predictors of long-term treatment outcome.

 
  • References

  • 1 Huber MA. Osteogenesis imperfecta. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 103 (3) 314-320
  • 2 Cundy T. Recent advances in osteogenesis imperfecta. Calcif Tissue Int 2012; 90 (6) 439-449
  • 3 Marini JC. Osteogenesis imperfecta. In: Kliegman RM, MD Stanton B, , St. Geme J, Schor N, Behrman RE. , eds. Nelson Textbook of Pediatrics, 18th ed. Philadelphia, PA: Saunders; 2007: 2887-2889
  • 4 Glorieux FH. Osteogenesis imperfecta. Best Pract Res Clin Rheumatol 2008; 22 (1) 85-100
  • 5 Primorac D, Rowe DW, Mottes M , et al. Osteogenesis imperfecta at the beginning of bone and joint decade. Croat Med J 2001; 42 (4) 393-415
  • 6 Sillence DO, Rimoin DL. Classification of osteogenesis imperfect. Lancet 1978; 1 (8072) 1041-1042
  • 7 Van Dijk FS, Pals G, Van Rijn RR, Nikkels PG, Cobben JM. Classification of Osteogenesis Imperfecta revisited. Eur J Med Genet 2010; 53 (1) 1-5
  • 8 Sillence DO, Rimoin DL, Danks DM. Clinical variability in osteogenesis imperfecta-variable expressivity or genetic heterogeneity. Birth Defects Orig Artic Ser 1979; 15 ( 5B): 113-129
  • 9 Glorieux FH, Rauch F, Plotkin H , et al. Type V osteogenesis imperfecta: a new form of brittle bone disease. J Bone Miner Res 2000; 15 (9) 1650-1658
  • 10 Glorieux FH, Ward LM, Rauch F, Lalic L, Roughley PJ, Travers R. Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J Bone Miner Res 2002; 17 (1) 30-38
  • 11 Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet 2004; 363 (9418) 1377-1385
  • 12 Bishop N. Characterising and treating osteogenesis imperfecta. Early Hum Dev 2010; 86 (11) 743-746
  • 13 Morello R, Bertin TK, Chen Y , et al. CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 2006; 127 (2) 291-304
  • 14 Cabral WA, Chang W, Barnes AM , et al. Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet 2007; 39 (3) 359-365
  • 15 Pyott SM, Schwarze U, Christiansen HE , et al. Mutations in PPIB (cyclophilin B) delay type I procollagen chain association and result in perinatal lethal to moderate osteogenesis imperfecta phenotypes. Hum Mol Genet 2011; 20 (8) 1595-1609
  • 16 Becker JSO, Semler O, Gilissen C , et al. Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 2011; 88 (3) 362-371
  • 17 Millington-Ward S, McMahon HP, Farrar GJ. Emerging therapeutic approaches for osteogenesis imperfecta. Trends Mol Med 2005; 11 (6) 299-305
  • 18 Fox JM, Chamberlain G, Ashton BA, Middleton J. Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol 2007; 137 (6) 491-502
  • 19 Vahle JL, Sato M, Long GG , et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1-34) for 2 years and relevance to human safety. Toxicol Pathol 2002; 30 (3) 312-321
  • 20 Aström E, Söderhäll S. Beneficial effect of long term intravenous bisphosphonate treatment of osteogenesis imperfecta. Arch Dis Child 2002; 86 (5) 356-364
  • 21 Rauch F, Travers R, Plotkin H, Glorieux FH. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Invest 2002; 110 (9) 1293-1299
  • 22 Gerstenfeld LC, Sacks DJ, Pelis M , et al. Comparison of effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing. J Bone Miner Res 2009; 24 (2) 196-208
  • 23 Satija NK, Singh VK, Verma YK , et al. Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. J Cell Mol Med 2009; 13 (11-12) 4385-4402
  • 24 Gurudutta GU, Satija NK, Singh VK, Verma YK, Gupta P, Tripathi RP. Stem cell therapy: a novel & futuristic treatment modality for disaster injuries. Indian J Med Res 2012; 135: 15-25
  • 25 Takahashi K, Tanabe K, Ohnuki M , et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131 (5) 861-872
  • 26 Okano H, Nakamura M, Yoshida K , et al. Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 2013; 112 (3) 523-533
  • 27 Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 1988; 136: 42-60
  • 28 Kassem M, Kristiansen M, Abdallah BM. Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin Pharmacol Toxicol 2004; 95 (5) 209-214
  • 29 Kon E, Filardo G, Roffi A , et al. Bone regeneration with mesenchymal stem cells. Clin Cases Miner Bone Metab 2012; 9 (1) 24-27
  • 30 Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 2003; 5 (1) 32-45
  • 31 Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 2004; 8 (3) 301-316
  • 32 Tiblad E, Westgren M. Fetal stem-cell transplantation. Best Pract Res Clin Obstet Gynaecol 2008; 22 (1) 189-201
  • 33 Westgren M. In utero stem cell transplantation. Semin Reprod Med 2006; 24 (5) 348-357
  • 34 Touraine JL. Rationale and results of in utero transplants of stem cells in humans. Bone Marrow Transplant 1992; 10 (Suppl. 01) 121-126
  • 35 Mackenzie TC, Flake AW. Multilineage differentiation of human MSC after in utero transplantation. Cytotherapy 2001; 3 (5) 403-405
  • 36 Schoeberlein A, Holzgreve W, Dudler L, Hahn S, Surbek DV. Tissue-specific engraftment after in utero transplantation of allogeneic mesenchymal stem cells into sheep fetuses. Am J Obstet Gynecol 2005; 192 (4) 1044-1052
  • 37 Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 1994; 56 (3) 283-294
  • 38 Pearson EG, Flake AW. Stem cell and genetic therapies for the fetus. Semin Pediatr Surg 2013; 22 (1) 56-61
  • 39 Westgren L, Anneren G, Axelsson O , et al. Donor chimerism across full allogenic barriers achieved by in utero transplantation of fetal mesenchymal stem cells in a case of osteogenesis imperfecta. Am J Obstet Gynecol 2003; 189 (6) S215
  • 40 Le Blanc K, Götherström C, Ringdén O , et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 2005; 79 (11) 1607-1614
  • 41 Panaroni C, Gioia R, Lupi A , et al. In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta. Blood 2009; 114 (2) 459-468
  • 42 Mehrotra M, LaRue AC. A therapeutic role for hematopoietic stem cells in osteogenesis imperfect. In: Puiu M, , ed. Genetic Disorder. 2013. Available from: http://www.intechopen.com/books/genetic-disorders/a-therapeutic-role-for-hematopoietic-stem-cells-in-osteogenesis-imperfecta . Accessed January 9, 2013
  • 43 Kamoun-Goldrat AS, Le Merrer MF. Animal models of osteogenesis imperfecta and related syndromes. J Bone Miner Metab 2007; 25 (4) 211-218
  • 44 Guillot PV, Abass O, Bassett JH , et al. Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood 2008; 111 (3) 1717-1725
  • 45 Vanleene M, Saldanha Z, Cloyd KL , et al. Transplantation of human fetal blood stem cells in the osteogenesis imperfecta mouse leads to improvement in multiscale tissue properties. Blood 2011; 117 (3) 1053-1060
  • 46 Jones GN, Moschidou D, Lay K , et al. Upregulating CXCR4 in human fetal mesenchymal stem cells enhances engraftment and bone mechanics in a mouse model of osteogenesis imperfecta. Stem Cells Transl Med 2012; 1 (1) 70-78
  • 47 Touraine JL. In utero transplantation of fetal liver stem cells into human fetuses. J Hematother 1996; 5 (2) 195-199
  • 48 Surbek DV, Tercanli S, Holzgreve W. Transabdominal first trimester embryofetoscopy as a potential approach to early in utero stem cell transplantation and gene therapy. Ultrasound Obstet Gynecol 2000; 15 (4) 302-307