Semin Respir Crit Care Med 2014; 35(01): 112-128
DOI: 10.1055/s-0033-1363457
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Imaging Assessment of Lung Tumor Angiogenesis: Insights and Innovations

Connie Yip
1   Division of Imaging Sciences and Biomedical Engineering, King's College, London, United Kingdom
2   Department of Radiation Oncology, National Cancer Centre, Singapore
,
Gary J. Cook
1   Division of Imaging Sciences and Biomedical Engineering, King's College, London, United Kingdom
3   PET Imaging Centre, Guys' and St Thomas' NHS Foundation Trust, London, United Kingdom
,
Amanda Weeks
1   Division of Imaging Sciences and Biomedical Engineering, King's College, London, United Kingdom
,
Vicky J. Goh
1   Division of Imaging Sciences and Biomedical Engineering, King's College, London, United Kingdom
4   Department of Radiology, Guys' and St Thomas' NHS Foundation Trust, London, United Kingdom
› Author Affiliations
Further Information

Publication History

Publication Date:
30 January 2014 (online)

Abstract

Lung cancer is the leading cause of cancer death in the United States. It is estimated that more than 228,000 new cases will be diagnosed in 2013, accounting for approximately 159,000 or 27% of all cancer deaths. Survival in these patients remains poor despite advances in surgery, definitive radiotherapy, and chemotherapy for primary and metastatic non-small cell lung cancer. Five-year relative survival rates remain at 27% for regional disease and 54% for node-negative disease. With the increasing personalization of therapy, there remains a need for better prognostic and predictive markers to direct patient management in lung cancer. Hypoxia and angiogenesis play an important role in the development and progression of lung cancer. Targeted and non-targeted imaging techniques in the preclinical and clinical setting, combined with advanced postprocessing techniques to assess tumor heterogeneity, may enable clinicians to better characterize lung tumors, and to predict and assess response to treatment. In this review, we summarize our current understanding of angiogenesis in lung cancer and discuss the available imaging techniques to assess this in the preclinical and clinical setting.

 
  • References

  • 1 Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100 (1) 57-70
  • 2 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144 (5) 646-674
  • 3 Hall EJ, Giaccia AJ. Oxygen Effect and Reoxygenation. Radiobiology for the Radiologist. 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006: 85-105
  • 4 Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86 (3) 353-364
  • 5 Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003; 9 (6) 677-684
  • 6 Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2 (1) 38-47
  • 7 Jain RK. Determinants of tumor blood flow: a review. Cancer Res 1988; 48 (10) 2641-2658
  • 8 Overgaard J. Hypoxic radiosensitization: adored and ignored. J Clin Oncol 2007; 25 (26) 4066-4074
  • 9 Meert AP, Paesmans M, Martin B , et al. The role of microvessel density on the survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer 2002; 87 (7) 694-701
  • 10 Trivella M, Pezzella F, Pastorino U, Harris AL, Altman DG ; Prognosis In Lung Cancer (PILC) Collaborative Study Group. Microvessel density as a prognostic factor in non-small-cell lung carcinoma: a meta-analysis of individual patient data. Lancet Oncol 2007; 8 (6) 488-499
  • 11 Zhan P, Wang J, Lv XJ , et al. Prognostic value of vascular endothelial growth factor expression in patients with lung cancer: a systematic review with meta-analysis. J Thorac Oncol 2009; 4 (9) 1094-1103
  • 12 Takanami I, Imamura T, Yamamoto Y, Kodaira S. Usefulness of platelet-derived growth factor as a prognostic factor in pulmonary adenocarcinoma. J Surg Oncol 1995; 58 (1) 40-43
  • 13 Andersen S, Donnem T, Al-Saad S, Al-Shibli K, Busund LT, Bremnes RM. Angiogenic markers show high prognostic impact on survival in marginally operable non-small cell lung cancer patients treated with adjuvant radiotherapy. J Thorac Oncol 2009; 4 (4) 463-471
  • 14 Volm M, Koomägi R, Mattern J, Stammler G. Prognostic value of basic fibroblast growth factor and its receptor (FGFR-1) in patients with non-small cell lung carcinomas. Eur J Cancer 1997; 33 (4) 691-693
  • 15 Rades D, Setter C, Dahl O, Schild SE, Noack F. Fibroblast growth factor 2—a predictor of outcome for patients irradiated for stage II-III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2012; 82 (1) 442-447
  • 16 Massabeau C, Rouquette I, Lauwers-Cances V , et al. Basic fibroblast growth factor-2/beta3 integrin expression profile: signature of local progression after chemoradiotherapy for patients with locally advanced non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2009; 75 (3) 696-702
  • 17 Donnem T, Al-Saad S, Al-Shibli K, Andersen S, Busund LT, Bremnes RM. Prognostic impact of platelet-derived growth factors in non-small cell lung cancer tumor and stromal cells. J Thorac Oncol 2008; 3 (9) 963-970
  • 18 Cai W, Chen K, Mohamedali KA , et al. PET of vascular endothelial growth factor receptor expression. J Nucl Med 2006; 47 (12) 2048-2056
  • 19 Khokhlatchev AV, Canagarajah B, Wilsbacher J , et al. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 1998; 93 (4) 605-615
  • 20 Xia P, Aiello LP, Ishii H , et al. Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest 1996; 98 (9) 2018-2026
  • 21 Fujio Y, Walsh K. Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J Biol Chem 1999; 274 (23) 16349-16354
  • 22 Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 1999; 4 (6) 915-924
  • 23 Lieu C, Heymach J, Overman M, Tran H, Kopetz S. Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin Cancer Res 2011; 17 (19) 6130-6139
  • 24 Ruoslahti E. Specialization of tumour vasculature. Nat Rev Cancer 2002; 2 (2) 83-90
  • 25 Fonsatti E, Altomonte M, Nicotra MR, Natali PG, Maio M. Endoglin (CD105): a powerful therapeutic target on tumor-associated angiogenetic blood vessels. Oncogene 2003; 22 (42) 6557-6563
  • 26 Tanaka F, Otake Y, Yanagihara K , et al. Evaluation of angiogenesis in non-small cell lung cancer: comparison between anti-CD34 antibody and anti-CD105 antibody. Clin Cancer Res 2001; 7 (11) 3410-3415
  • 27 Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer 2002; 2 (2) 91-100
  • 28 Bachmann IM, Ladstein RG, Straume O, Naumov GN, Akslen LA. Tumor necrosis is associated with increased alphavbeta3 integrin expression and poor prognosis in nodular cutaneous melanomas. BMC Cancer 2008; 8: 362
  • 29 Allen MD, Vaziri R, Green M , et al. Clinical and functional significance of α9β1 integrin expression in breast cancer: a novel cell-surface marker of the basal phenotype that promotes tumour cell invasion. J Pathol 2011; 223 (5) 646-658
  • 30 Haubner R, Beer AJ, Wang H, Chen X. Positron emission tomography tracers for imaging angiogenesis. Eur J Nucl Med Mol Imaging 2010; 37 (Suppl. 01) S86-S103
  • 31 Choe YS, Lee KH. Targeted in vivo imaging of angiogenesis: present status and perspectives. Curr Pharm Des 2007; 13 (1) 17-31
  • 32 Sandler A, Gray R, Perry MC , et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006; 355 (24) 2542-2550
  • 33 Reck M, von Pawel J, Zatloukal P , et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 2009; 27 (8) 1227-1234
  • 34 Reck M, von Pawel J, Zatloukal P , et al; BO17704 Study Group. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann Oncol 2010; 21 (9) 1804-1809
  • 35 McKeage MJ. Clinical trials of vascular disrupting agents in advanced non–small-cell lung cancer. Clin Lung Cancer 2011; 12 (3) 143-147
  • 36 McKeage MJ, Baguley BC. Disrupting established tumor blood vessels: an emerging therapeutic strategy for cancer. Cancer 2010; 116 (8) 1859-1871
  • 37 McKeage MJ, Von Pawel J, Reck M , et al. Randomised phase II study of ASA404 combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer. Br J Cancer 2008; 99 (12) 2006-2012
  • 38 McKeage MJ, Reck M, Jameson MB , et al. Phase II study of ASA404 (vadimezan, 5,6-dimethylxanthenone-4-acetic acid/DMXAA) 1800 mg/m(2) combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer. Lung Cancer 2009; 65 (2) 192-197
  • 39 Lara Jr PN, Douillard JY, Nakagawa K , et al. Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J Clin Oncol 2011; 29 (22) 2965-2971
  • 40 Shepherd FA, Giaccone G, Seymour L , et al. Prospective, randomized, double-blind, placebo-controlled trial of marimastat after response to first-line chemotherapy in patients with small-cell lung cancer: a trial of the National Cancer Institute of Canada-Clinical Trials Group and the European Organization for Research and Treatment of Cancer. J Clin Oncol 2002; 20 (22) 4434-4439
  • 41 Bissett D, O'Byrne KJ, von Pawel J , et al. Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer. J Clin Oncol 2005; 23 (4) 842-849
  • 42 Nishino M, Jagannathan JP, Krajewski KM , et al. Personalized tumor response assessment in the era of molecular medicine: cancer-specific and therapy-specific response criteria to complement pitfalls of RECIST. AJR Am J Roentgenol 2012; 198 (4) 737-745
  • 43 Marom EM, Martinez CH, Truong MT , et al. Tumor cavitation during therapy with antiangiogenesis agents in patients with lung cancer. J Thorac Oncol 2008; 3 (4) 351-357
  • 44 Crabb SJ, Patsios D, Sauerbrei E , et al. Tumor cavitation: impact on objective response evaluation in trials of angiogenesis inhibitors in non-small-cell lung cancer. J Clin Oncol 2009; 27 (3) 404-410
  • 45 Eisenbrey JR, Forsberg F. Contrast-enhanced ultrasound for molecular imaging of angiogenesis. Eur J Nucl Med Mol Imaging 2010; 37 (Suppl. 01) S138-S146
  • 46 Cosgrove D, Lassau N. Imaging of perfusion using ultrasound. Eur J Nucl Med Mol Imaging 2010; 37 (Suppl. 01) S65-S85
  • 47 McCulloch M, Gresser C, Moos S , et al. Ultrasound contrast physics: a series on contrast echocardiography, article 3. J Am Soc Echocardiogr 2000; 13 (10) 959-967
  • 48 Wilson SR, Greenbaum LD, Goldberg BB. Contrast-enhanced ultrasound: what is the evidence and what are the obstacles?. AJR Am J Roentgenol 2009; 193 (1) 55-60
  • 49 Ellegala DB, Leong-Poi H, Carpenter JE , et al. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation 2003; 108 (3) 336-341
  • 50 Willmann JK, Paulmurugan R, Chen K , et al. US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology 2008; 246 (2) 508-518
  • 51 Lyshchik A, Fleischer AC, Huamani J, Hallahan DE, Brissova M, Gore JC. Molecular imaging of vascular endothelial growth factor receptor 2 expression using targeted contrast-enhanced high-frequency ultrasonography. J Ultrasound Med 2007; 26 (11) 1575-1586
  • 52 Korpanty G, Carbon JG, Grayburn PA, Fleming JB, Brekken RA. Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 2007; 13 (1) 323-330
  • 53 Palmowski M, Huppert J, Ladewig G , et al. Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Mol Cancer Ther 2008; 7 (1) 101-109
  • 54 Ning S, Tian J, Marshall DJ, Knox SJ. Anti-alphav integrin monoclonal antibody intetumumab enhances the efficacy of radiation therapy and reduces metastasis of human cancer xenografts in nude rats. Cancer Res 2010; 70 (19) 7591-7599
  • 55 Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 2008; 29 (3) 193-207
  • 56 Su ZF, Liu G, Gupta S, Zhu Z, Rusckowski M, Hnatowich DJ. In vitro and in vivo evaluation of a Technetium-99m-labeled cyclic RGD peptide as a specific marker of alpha(V)beta(3) integrin for tumor imaging. Bioconjug Chem 2002; 13 (3) 561-570
  • 57 Bogdanowich-Knipp SJ, Jois DS, Siahaan TJ. The effect of conformation on the solution stability of linear vs. cyclic RGD peptides. J Pept Res 1999; 53 (5) 523-529
  • 58 Dijkgraaf I, Boerman OC. Molecular imaging of angiogenesis with SPECT. Eur J Nucl Med Mol Imaging 2010; 37 (Suppl. 01) S104-S113
  • 59 Beer AJ, Kessler H, Wester HJ, Schwaiger M. PET imaging of integrin alphav beta3 expression. Theranostics 2011; 1: 48-57
  • 60 Haubner R, Wester HJ, Burkhart F , et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 2001; 42 (2) 326-336
  • 61 Haubner R, Wester HJ, Weber WA , et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001; 61 (5) 1781-1785
  • 62 Morrison MS, Ricketts SA, Barnett J, Cuthbertson A, Tessier J, Wedge SR. Use of a novel Arg-Gly-Asp radioligand, 18F-AH111585, to determine changes in tumor vascularity after antitumor therapy. J Nucl Med 2009; 50 (1) 116-122
  • 63 Chen X, Sievers E, Hou Y , et al. Integrin alpha v beta 3-targeted imaging of lung cancer. Neoplasia 2005; 7 (3) 271-279
  • 64 Decristoforo C, Faintuch-Linkowski B, Rey A , et al. [99mTc]HYNIC-RGD for imaging integrin alphavbeta3 expression. Nucl Med Biol 2006; 33 (8) 945-952
  • 65 Backer MV, Levashova Z, Patel V , et al. Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med 2007; 13 (4) 504-509
  • 66 Nagengast WB, Lub-de Hooge MN, Oosting SF , et al. VEGF-PET imaging is a noninvasive biomarker showing differential changes in the tumor during sunitinib treatment. Cancer Res 2011; 71 (1) 143-153
  • 67 Nayak TK, Garmestani K, Baidoo KE, Milenic DE, Brechbiel MW. PET imaging of tumor angiogenesis in mice with VEGF-A-targeted (86)Y-CHX-A″-DTPA-bevacizumab. Int J Cancer 2011; 128 (4) 920-926
  • 68 Nagengast WB, de Vries EG, Hospers GA , et al. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med 2007; 48 (8) 1313-1319
  • 69 Blankenberg FG, Levashova Z, Sarkar SK, Pizzonia J, Backer MV, Backer JM. Noninvasive assessment of tumor VEGF receptors in response to treatment with pazopanib: a molecular imaging study. Transl Oncol 2010; 3 (1) 56-64
  • 70 Yoshimoto M, Kinuya S, Kawashima A, Nishii R, Yokoyama K, Kawai K. Radioiodinated VEGF to image tumor angiogenesis in a LS180 tumor xenograft model. Nucl Med Biol 2006; 33 (8) 963-969
  • 71 Zhang Y, Hong H, Nayak TR , et al. Imaging tumor angiogenesis in breast cancer experimental lung metastasis with positron emission tomography, near-infrared fluorescence, and bioluminescence. Angiogenesis 2013; 16 (3) 663-674
  • 72 Furumoto S, Takashima K, Kubota K, Ido T, Iwata R, Fukuda H. Tumor detection using 18F-labeled matrix metalloproteinase-2 inhibitor. Nucl Med Biol 2003; 30 (2) 119-125
  • 73 Zheng QH, Fei X, Liu X , et al. Comparative studies of potential cancer biomarkers carbon-11 labeled MMP inhibitors (S)-2-(4′-[11C]methoxybiphenyl-4-sulfonylamino)-3-methylbutyric acid and N-hydroxy-(R)-2-[[(4′-[11C]methoxyphenyl)sulfonyl]benzylamino]-3-methylbutanamide. Nucl Med Biol 2004; 31 (1) 77-85
  • 74 Oltenfreiter R, Staelens L, Labied S , et al. Tryptophane-based biphenylsulfonamide matrix metalloproteinase inhibitors as tumor imaging agents. Cancer Biother Radiopharm 2005; 20 (6) 639-647
  • 75 Pini A, Viti F, Santucci A , et al. Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 1998; 273 (34) 21769-21776
  • 76 Demartis S, Tarli L, Borsi L, Zardi L, Neri D. Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin. Eur J Nucl Med 2001; 28 (4) 534-539
  • 77 Rossin R, Berndorff D, Friebe M, Dinkelborg LM, Welch MJ. Small-animal PET of tumor angiogenesis using a (76)Br-labeled human recombinant antibody fragment to the ED-B domain of fibronectin. J Nucl Med 2007; 48 (7) 1172-1179
  • 78 Berndorff D, Borkowski S, Moosmayer D , et al. Imaging of tumor angiogenesis using 99mTc-labeled human recombinant anti-ED-B fibronectin antibody fragments. J Nucl Med 2006; 47 (10) 1707-1716
  • 79 Snoeks TJ, Löwik CW, Kaijzel EL. 'In vivo' optical approaches to angiogenesis imaging. Angiogenesis 2010; 13 (2) 135-147
  • 80 Kossodo S, Pickarski M, Lin SA , et al. Dual in vivo quantification of integrin-targeted and protease-activated agents in cancer using fluorescence molecular tomography (FMT). Mol Imaging Biol 2010; 12 (5) 488-499
  • 81 Zhang N, Fang Z, Contag PR, Purchio AF, West DB. Tracking angiogenesis induced by skin wounding and contact hypersensitivity using a Vegfr2-luciferase transgenic mouse. Blood 2004; 103 (2) 617-626
  • 82 Angst E, Chen M, Mojadidi M, Hines OJ, Reber HA, Eibl G. Bioluminescence imaging of angiogenesis in a murine orthotopic pancreatic cancer model. Mol Imaging Biol 2010; 12 (6) 570-575
  • 83 Chen X, Conti PS, Moats RA. In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts. Cancer Res 2004; 64 (21) 8009-8014
  • 84 Wu Y, Cai W, Chen X. Near-infrared fluorescence imaging of tumor integrin alpha v beta 3 expression with Cy7-labeled RGD multimers. Mol Imaging Biol 2006; 8 (4) 226-236
  • 85 Backer MV, Gaynutdinov TI, Patel V , et al. Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther 2005; 4 (9) 1423-1429
  • 86 Bremer C, Bredow S, Mahmood U, Weissleder R, Tung CH. Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model. Radiology 2001; 221 (2) 523-529
  • 87 de Roos A, Doornbos J, Baleriaux D, Bloem HL, Falke TH. Clinical applications of gadolinium-DTPA in MRI. Magn Reson Annu 1988; 113-145
  • 88 Thorek DL, Chen AK, Czupryna J, Tsourkas A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 2006; 34 (1) 23-38
  • 89 Barrett T, Padhani A, Choyke PL. Measurement of angiogenesis: MRI principles and practice. In: Husband JE, Reznek RH, , eds. Imaging in oncology. 3rd ed. London: Informa Healthcare; 2010
  • 90 Jiang T, Zhang C, Zheng X , et al. Noninvasively characterizing the different alphavbeta3 expression patterns in lung cancers with RGD-USPIO using a clinical 3.0T MR scanner. Int J Nanomedicine 2009; 4: 241-249
  • 91 Zhang C, Jugold M, Woenne EC , et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res 2007; 67 (4) 1555-1562
  • 92 Kessinger CW, Khemtong C, Togao O, Takahashi M, Sumer BD, Gao J. In vivo angiogenesis imaging of solid tumors by alpha(v)beta(3)-targeted, dual-modality micellar nanoprobes. Exp Biol Med (Maywood) 2010; 235 (8) 957-965
  • 93 Khemtong C, Kessinger CW, Ren J , et al. In vivo off-resonance saturation magnetic resonance imaging of alphavbeta3-targeted superparamagnetic nanoparticles. Cancer Res 2009; 69 (4) 1651-1658
  • 94 Yuan A, Lin CY, Chou CH , et al. Functional and structural characteristics of tumor angiogenesis in lung cancers overexpressing different VEGF isoforms assessed by DCE- and SSCE-MRI. PLoS ONE 2011; 6 (1) e16062
  • 95 Görg C, Kring R, Bert T. Transcutaneous contrast-enhanced sonography of peripheral lung lesions. AJR Am J Roentgenol 2006; 187 (4) W420-9
  • 96 Milne EN. Circulation of primary and metastatic pulmonary neoplasms. A postmortem microarteriographic study. Am J Roentgenol Radium Ther Nucl Med 1967; 100 (3) 603-619
  • 97 Nakano S, Gibo J, Fukushima Y , et al. Perfusion evaluation of lung cancer: assessment using dual-input perfusion computed tomography. J Thorac Imaging 2013; 28 (4) 253-262
  • 98 Santimaria M, Moscatelli G, Viale GL , et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 2003; 9: 571-579
  • 99 Beer AJ, Haubner R, Sarbia M , et al. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res 2006; 12 (13) 3942-3949
  • 100 Beer AJ, Grosu AL, Carlsen J , et al. [18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 2007; 13 (22, Pt 1): 6610-6616
  • 101 Schnell O, Krebs B, Carlsen J , et al. Imaging of integrin alpha(v)beta(3) expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography. Neuro Oncol 2009; 11 (6) 861-870
  • 102 Beer AJ, Lorenzen S, Metz S , et al. Comparison of integrin alphaVbeta3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-galacto-RGD and 18F-FDG. J Nucl Med 2008; 49 (1) 22-29
  • 103 Metz S, Ganter C, Lorenzen S , et al. Phenotyping of tumor biology in patients by multimodality multiparametric imaging: relationship of microcirculation, alphavbeta3 expression, and glucose metabolism. J Nucl Med 2010; 51 (11) 1691-1698
  • 104 Axelsson R, Bach-Gansmo T, Castell-Conesa J, McParland BJ ; Study Group. An open-label, multicenter, phase 2a study to assess the feasibility of imaging metastases in late-stage cancer patients with the alpha v beta 3-selective angiogenesis imaging agent 99mTc-NC100692. Acta Radiol 2010; 51 (1) 40-46
  • 105 Zhu Z, Miao W, Li Q , et al. 99mTc-3PRGD2 for integrin receptor imaging of lung cancer: a multicenter study. J Nucl Med 2012; 53 (5) 716-722
  • 106 Ma Q, Ji B, Jia B , et al. Differential diagnosis of solitary pulmonary nodules using 99mTc-3P4-RGD2 scintigraphy. Eur J Nucl Med Mol Imaging 2011; 38 (12) 2145-2152
  • 107 Choyke PL, Dwyer AJ, Knopp MV. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 2003; 17 (5) 509-520
  • 108 Turkbey B, Kobayashi H, Ogawa M, Bernardo M, Choyke PL. Imaging of tumor angiogenesis: functional or targeted?. AJR Am J Roentgenol 2009; 193 (2) 304-313
  • 109 de Langen AJ, van den Boogaart VE, Marcus JT, Lubberink M. Use of H2(15)O-PET and DCE-MRI to measure tumor blood flow. Oncologist 2008; 13 (6) 631-644
  • 110 Tofts PS, Brix G, Buckley DL , et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999; 10 (3) 223-232
  • 111 Schaefer JF, Schneider V, Vollmar J , et al. Solitary pulmonary nodules: association between signal characteristics in dynamic contrast enhanced MRI and tumor angiogenesis. Lung Cancer 2006; 53 (1) 39-49
  • 112 Fujimoto K, Abe T, Müller NL , et al. Small peripheral pulmonary carcinomas evaluated with dynamic MR imaging: correlation with tumor vascularity and prognosis. Radiology 2003; 227 (3) 786-793
  • 113 de Langen AJ, van den Boogaart V, Lubberink M , et al. Monitoring response to antiangiogenic therapy in non-small cell lung cancer using imaging markers derived from PET and dynamic contrast-enhanced MRI. J Nucl Med 2011; 52 (1) 48-55
  • 114 Hunter GJ, Hamberg LM, Choi N, Jain RK, McCloud T, Fischman AJ. Dynamic T1-weighted magnetic resonance imaging and positron emission tomography in patients with lung cancer: correlating vascular physiology with glucose metabolism. Clin Cancer Res 1998; 4 (4) 949-955
  • 115 Ng QS, Goh V. Angiogenesis in non-small cell lung cancer: imaging with perfusion computed tomography. J Thorac Imaging 2010; 25 (2) 142-150
  • 116 Brix G, Griebel J, Kiessling F, Wenz F. Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements. Eur J Nucl Med Mol Imaging 2010; 37 (Suppl. 01) S30-S51
  • 117 Tateishi U, Kusumoto M, Nishihara H, Nagashima K, Morikawa T, Moriyama N. Contrast-enhanced dynamic computed tomography for the evaluation of tumor angiogenesis in patients with lung carcinoma. Cancer 2002; 95 (4) 835-842
  • 118 Yi CA, Lee KS, Kim EA , et al. Solitary pulmonary nodules: dynamic enhanced multi-detector row CT study and comparison with vascular endothelial growth factor and microvessel density. Radiology 2004; 233 (1) 191-199
  • 119 Mandeville HC, Ng QS, Daley FM , et al. Operable non-small cell lung cancer: correlation of volumetric helical dynamic contrast-enhanced CT parameters with immunohistochemical markers of tumor hypoxia. Radiology 2012; 264 (2) 581-589
  • 120 Ma SH, Le HB, Jia BH , et al. Peripheral pulmonary nodules: relationship between multi-slice spiral CT perfusion imaging and tumor angiogenesis and VEGF expression. BMC Cancer 2008; 8: 186
  • 121 Ng QS, Goh V, Milner J, Padhani AR, Saunders MI, Hoskin PJ. Acute tumor vascular effects following fractionated radiotherapy in human lung cancer: In vivo whole tumor assessment using volumetric perfusion computed tomography. Int J Radiat Oncol Biol Phys 2007; 67 (2) 417-424
  • 122 Ng QS, Goh V, Carnell D , et al. Tumor antivascular effects of radiotherapy combined with combretastatin a4 phosphate in human non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2007; 67 (5) 1375-1380
  • 123 Wang J, Wu N, Cham MD, Song Y. Tumor response in patients with advanced non-small cell lung cancer: perfusion CT evaluation of chemotherapy and radiation therapy. AJR Am J Roentgenol 2009; 193 (4) 1090-1096
  • 124 Lind JS, Meijerink MR, Dingemans AM , et al. Dynamic contrast-enhanced CT in patients treated with sorafenib and erlotinib for non-small cell lung cancer: a new method of monitoring treatment?. Eur Radiol 2010; 20 (12) 2890-2898
  • 125 Ng QS, Goh V, Milner J , et al. Effect of nitric-oxide synthesis on tumour blood volume and vascular activity: a phase I study. Lancet Oncol 2007; 8 (2) 111-118
  • 126 Leach MO, Morgan B, Tofts PS , et al; Experimental Cancer Medicine Centres Imaging Network Steering Committee. Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging. Eur Radiol 2012; 22 (7) 1451-1464
  • 127 Aboagye EO, Gilbert FJ, Fleming IN , et al; Experimental Cancer Medicine Centre 13 Imaging Network Group. Recommendations for measurement of tumour vascularity with positron emission tomography in early phase clinical trials. Eur Radiol 2012; 22 (7) 1465-1478
  • 128 Miles KA, Lee TY, Goh V , et al; Experimental Cancer Medicine Centre Imaging Network Group. Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol 2012; 22 (7) 1430-1441
  • 129 Leen E, Averkiou M, Arditi M , et al. Dynamic contrast enhanced ultrasound assessment of the vascular effects of novel therapeutics in early stage trials. Eur Radiol 2012; 22 (7) 1442-1450
  • 130 Quantification Profile DCE-MRI. Quantitative Imaging Biomarkers Alliance. Version 1.0. Reviewed Draft. QIBA. Available at: http://rsna.org/QIBA_.aspx . Accessed April 14, 2013
  • 131 Volume Change Profile CT. Quantitative Imaging Biomarkers Alliance. Version 2.2. Reviewed draft. QIBA. Available at: http://rsna.org/QIBA_aspx . Accessed April 14, 2013
  • 132 Sanghera B, Banerjee D, Khan A , et al. Reproducibility of 2D and 3D fractal analysis techniques for the assessment of spatial heterogeneity of regional blood flow in rectal cancer. Radiology 2012; 263 (3) 865-873
  • 133 Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology 2013; 266 (1) 177-184
  • 134 Goh V, Sanghera B, Wellsted DM, Sundin J, Halligan S. Assessment of the spatial pattern of colorectal tumour perfusion estimated at perfusion CT using two-dimensional fractal analysis. Eur Radiol 2009; 19 (6) 1358-1365
  • 135 Eliat PA, Olivié D, Saïkali S, Carsin B, Saint-Jalmes H, de Certaines JD. Can dynamic contrast-enhanced magnetic resonance imaging combined with texture analysis differentiate malignant glioneuronal tumors from other glioblastoma?. Neurol Res Int 2012; 2012: 195176
  • 136 Gibbs P, Turnbull LW. Textural analysis of contrast-enhanced MR images of the breast. Magn Reson Med 2003; 50 (1) 92-98
  • 137 Cook GJ, Yip C, Siddique M , et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy?. J Nucl Med 2013; 54 (1) 19-26
  • 138 Goh V, Ganeshan B, Nathan P, Juttla JK, Vinayan A, Miles KA. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 2011; 261 (1) 165-171
  • 139 Tixier F, Le Rest CC, Hatt M , et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 2011; 52 (3) 369-378