Klin Monbl Augenheilkd 2014; 231(3): 210-215
DOI: 10.1055/s-0033-1351059
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Spezifische Gentherapie bei erblichen Netzhauterkrankungen – ein Update

Specific Gene Therapy for Hereditary Retinal Dystrophies – An Update
K. Stieger
Justus-Liebig-Universität Giessen, Klinik und Poliklinik für Augenheilkunde, Gießen
,
B. Lorenz
Justus-Liebig-Universität Giessen, Klinik und Poliklinik für Augenheilkunde, Gießen
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht 27. September 2013

akzeptiert 14. Oktober 2013

Publikationsdatum:
10. Dezember 2013 (online)

Zusammenfassung

Therapiemöglichkeiten sind auf der Basis der spezifischen Gentherapie für einen Teil der Patienten mit erblichen Netzhautdegenerationen Realität geworden und werden momentan in verschiedenen klinischen Versuchen getestet. Am weitesten fortgeschritten ist die Behandlung von Patienten mit Mutationen im RPE65-Gen. Weitere Studien laufen mit Patienten, die krankheitsauslösende Mutationen im MERTK-, im REP1-, im ABCA4-, und im Myosin7A-Gen aufweisen. Aufgrund der unterschiedlichen Größe der zu transferierenden Genkopien werden Vektoren basierend auf adenoassoziierten Viren (AAV) oder Lentiviren (EIAV, equine infectious anemia virus) genutzt. Ein wichtiger Forschungsbereich umfasst die objektivierbare Messung des therapeutischen Effekts, da dies bisher nur unzureichend möglich ist. Dieser Artikel soll ein Update zur Situation in der spezifischen Gentherapie für erbliche Netzhautdegenerationen bieten.

Abstract

Treatment possibilities based on specific gene therapy strategies have become reality for a small number of patients with hereditary retinal dystrophies and are currently under investigation in several clinical trials worldwide. The most advanced studies are for patients suffering from mutations in the RPE65 gene. In addition, studies are ongoing for patients with disease causing mutations in the MERTK, REP1, ABCA4, or Myosin7A gene. Depending on the size of the gene copy to be transferred, two vectors are currently used in clinical trials: vectors based on adeno-associated virus (AAV) or on lentivirus (equine infectious anaemia virus, EIAV). An important aspect of current research includes the capacity to objectively measure the treatment effect in patients, since this is currently limited. This article gives an overview of the current state of specific gene therapy for hereditary retinal dystrophies.

 
  • Literatur

  • 1 Lorenz B, Preising M, Stieger K. Retinal blinding disorders and gene therapy–molecular and clinical aspects. Curr Gene Ther 2010; 10: 350-370
  • 2 den Hollander AI, Black A, Bennett J et al. Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J Clin Invest 2010; 120: 3042-3053
  • 3 Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet 2006; 368: 1795-1809
  • 4 Jacobson SG, Cideciyan AV. Treatment possibilities for retinitis pigmentosa. N Engl J Med 2010; 363: 1669-1671
  • 5 Boye SE, Boye SL, Lewin AS et al. A comprehensive review of retinal gene therapy. Mol Ther 2013; 21: 509-519
  • 6 Stieger K, Lorenz B. [The treatment of inherited dystrophies and neovascular disorders of the retina by rAAV-mediated gene therapy]. Klin Monatsbl Augenheilkd 2008; 225: 1009-1023
  • 7 Lipinski DM, Thake M, MacLaren RE. Clinical applications of retinal gene therapy. Prog Retin Eye Res 2013; 32: 22-47
  • 8 Binley K, Widdowson P, Loader J et al. Transduction of photoreceptors with equine infectious anemia virus lentiviral vectors: safety and biodistribution of StarGen for Stargardt disease. Invest Ophthalmol Vis Sci 2013; 54: 4061-4071
  • 9 Le Meur G, Weber M, Péréon Y et al. Postsurgical assessment and long-term safety of recombinant adeno-associated virus-mediated gene transfer into the retinas of dogs and primates. Arch Ophthalmol 2005; 123: 500-506
  • 10 Koirala A, Conley SM, Naash MI. A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium. Biomaterials 2013; 34: 7158-7167
  • 11 Kompella UB, Amrite AC, Pacha Ravi R et al. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res 2013; 36: 172-198
  • 12 Farrar GJ, Millington-Ward S, Chadderton N et al. Gene-based therapies for dominantly inherited retinopathies. Gene Ther 2012; 19: 137-144
  • 13 Cideciyan AV. Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy. Prog Retin Eye Res 2012; 29: 398-427
  • 14 Jacobson SG, Aleman TS, Cideciyan AV et al. Defining the residual vision in leber congenital amaurosis caused by RPE65 mutations. Invest Ophthalmol Vis Sci 2009; 50: 2368-2375
  • 15 Paunescu K, Wabbels B, Preising MN et al. Longitudinal and cross-sectional study of patients with early-onset severe retinal dystrophy associated with RPE65 mutations. Graefes Arch Clin Exp Ophthalmol 2005; 243: 417-426
  • 16 Lorenz B, Poliakov E, Schambeck M et al. A comprehensive clinical and biochemical functional study of a novel RPE65 hypomorphic mutation. Invest Ophthalmol Vis Sci 2008; 49: 5235-5242
  • 17 Maguire AM, High KA, Auricchio A et al. Age-dependent effects of RPE65 gene therapy for Leberʼs congenital amaurosis: a phase 1 dose-escalation trial. Lancet 2009; 374: 1597-1605
  • 18 Cideciyan AV, Aleman TS, Boye SL et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A 2008; 105: 15112-15117
  • 19 Banin E, Bandah-Rozenfeld D, Obolensky A et al. Molecular anthropology meets genetic medicine to treat blindness in the North African Jewish population: human gene therapy initiated in Israel. Hum Gene Ther 2010; 21: 1749-1757
  • 20 Cideciyan AV, Hauswirth WW, Aleman TS et al. Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther 2009; 20: 999-1004
  • 21 Jacobson SG, Cideciyan AV, Ratnakaram R et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 2012; 130: 9-24
  • 22 Bainbridge JW, Smith AJ, Barker SS et al. Effect of gene therapy on visual function in Leberʼs congenital amaurosis. N Engl J Med 2008; 358: 2231-2239
  • 23 Hauswirth WW, Aleman TS, Kaushal S et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 2008; 19: 979-990
  • 24 Simonelli F, Maguire AM, Testa F et al. Gene therapy for Leberʼs congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 2010; 18: 643-650
  • 25 Testa F, Maguire AM, Rossi S et al. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2. Ophthalmology 2013; 120: 1283-1291
  • 26 Maguire AM, Simonelli F, Pierce EA et al. Safety and efficacy of gene transfer for Leberʼs congenital amaurosis. N Engl J Med 2008; 358: 2240-2248
  • 27 Cideciyan AV, Hauswirth WW, Aleman TS et al. Vision 1 year after gene therapy for Leberʼs congenital amaurosis. N Engl J Med 2009; 361: 725-727
  • 28 Acland GM, Aguirre GD, Ray J et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001; 28: 92-95
  • 29 Narfstrom K. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest Ophthalmol Vis Sci 2003; 44: 1663-1672
  • 30 Le Meur G, Stieger K, Smith AJ et al. Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Ther 2007; 14: 292-303
  • 31 Cideciyan AV, Jacobson SG, Beltran WA et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc Natl Acad Sci U S A 2013; 110: E517-E525
  • 32 Gal A, Li Y, Thompson DA et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 2000; 26: 270-271
  • 33 Smith AJ, Schlichtenbrede FC, Tschernutter M et al. AAV-Mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Mol Ther 2003; 8: 188-195
  • 34 Tschernutter M, Schlichtenbrede FC, Howe S et al. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy. Gene Ther 2005; 12: 694-701
  • 35 Preising M, Ayuso C. Rab escort protein 1 (REP1) in intracellular traffic: a functional and pathophysiological overview. Ophthalmic Genet 2004; 25: 101-110
  • 36 Preising MN, Wegscheider E, Friedburg C et al. Fundus autofluorescence in carriers of choroideremia and correlation with electrophysiologic and psychophysical data. Ophthalmology 2009; 116: 1201-1209
  • 37 Tolmachova T, Tolmachov OE, Barnard AR et al. Functional expression of Rab escort protein 1 following AAV2-mediated gene delivery in the retina of choroideremia mice and human cells ex vivo. J Mol Med (Berl) 2013; 91: 825-837
  • 38 Vasireddy V, Mills JA, Gaddameedi R et al. AAV-mediated gene therapy for choroideremia: preclinical studies in personalized models. PLoS One 2013; 8: e61396
  • 39 Allikmets R, Singh N, Sun H et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 1997; 15: 236-246
  • 40 Fliegauf M, Benzing T, Omran H. When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 2007; 8: 880-893
  • 41 Adams NA, Awadein A, Toma HS. The retinal ciliopathies. Ophthalmic Genet 2007; 28: 113-125
  • 42 Colella P, Sommella A, Marrocco E et al. Myosin7a deficiency results in reduced retinal activity which is improved by gene therapy. PLoS One 2013; 8: e72027
  • 43 Lopes VS, Boye SE, Louie CM et al. Retinal gene therapy with a large MYO7A cDNA using adeno-associated virus. Gene Ther 2013; 20: 824-833
  • 44 Michalakis S, Mühlfriedel R, Tanimoto N et al. Restoration of cone vision in the CNGA3-/- mouse model of congenital complete lack of cone photoreceptor function. Mol Ther 2010; 18: 2057-2063
  • 45 Komáromy AM, Rowlan JS, Corr ATP et al. Transient photoreceptor deconstruction by CNTF enhances rAAV-mediated cone functional rescue in late stage CNGB3-achromatopsia. Mol Ther 2013; 21: 1131-1141
  • 46 Park TK, Wu Z, Kjellstrom S et al. Intravitreal delivery of AAV8 retinoschisin results in cell type-specific gene expression and retinal rescue in the Rs1-KO mouse. Gene Ther 2009; 16: 916-926
  • 47 Takada Y, Vijayasarathy C, Zeng Y et al. Synaptic pathology in retinoschisis knockout (Rs1-/y) mouse retina and modification by rAAV-Rs1 gene delivery. Invest Ophthalmol Vis Sci 2008; 49: 3677-3686
  • 48 Beltran WA, Cideciyan AV, Lewin AS et al. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc Natl Acad Sci U S A 2012; 109: 2132-2137
  • 49 Jacobson SG, Cideciyan AV, Peshenko IV et al. Determining consequences of retinal membrane guanylyl cyclase (RetGC1) deficiency in human Leber congenital amaurosis en route to therapy: residual cone-photoreceptor vision correlates with biochemical properties of the mutants. Hum Mol Genet 2013; 22: 168-183
  • 50 Boye SL, Peshenko IV, Huang WC et al. AAV-mediated gene therapy in the guanylate cyclase (RetGC1/RetGC2) double knockout mouse model of Leber congenital amaurosis. Hum. Gene Ther 2013; 24: 189-202
  • 51 Stone EM, Aldave AJ, Drack AV et al. Recommendations for genetic testing of inherited eye diseases: report of the American Academy of Ophthalmology task force on genetic testing. Ophthalmology 2012; 119: 2408-2410
  • 52 Kardon R, Anderson SC, Damarjian TG et al. Chromatic pupil responses: preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex. Ophthalmology 2009; 116: 1564-1573
  • 53 Park JC, Moura AL, Raza S et al. Toward a clinical protocol for assessing rod, cone and melanopsin contributions to the human pupil response. Invest Ophthalmol Vis Sci 2011; 52: 6624-6635
  • 54 Lorenz B, Strohmayr E, Zahn S et al. Chromatic pupillometry dissects function of the three different light-sensitive retinal cell populations in RPE65 deficiency. Invest Ophthalmol Vis Sci 2012; 53: 5641-5652
  • 55 Roman AJ, Schwartz SB, Aleman TS et al. Quantifying rod photoreceptor-mediated vision in retinal degenerations: dark-adapted thresholds as outcome measures. Exp Eye Res 2005; 80: 259-272
  • 56 Hood DC, Lazow MA, Locke KG et al. The transition zone between healthy and diseased retina in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 2011; 52: 101-108
  • 57 Birch DG, Locke KG, Wen Y et al. Spectral-domain optical coherence tomography measures of outer segment layer progression in patients with x-linked retinitis pigmentosa. JAMA Ophthalmol 2013; 131: 1143-1150