Semin Respir Crit Care Med 2013; 34(03): 352-360
DOI: 10.1055/s-0033-1348463
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Neutrophilic Reversible Allograft Dysfunction (NRAD) and Restrictive Allograft Syndrome (RAS)

Stijn E. Verleden
1   Lung Transplantation Unit, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
,
Elly Vandermeulen
1   Lung Transplantation Unit, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
,
David Ruttens
1   Lung Transplantation Unit, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
,
Robin Vos
1   Lung Transplantation Unit, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
,
Annemie Vaneylen
1   Lung Transplantation Unit, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
,
Lieven J. Dupont
1   Lung Transplantation Unit, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
,
Dirk E. Van Raemdonck
1   Lung Transplantation Unit, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
,
Bart M. Vanaudenaerde
1   Lung Transplantation Unit, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
,
Geert M. Verleden
1   Lung Transplantation Unit, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
› Author Affiliations
Further Information

Publication History

Publication Date:
02 July 2013 (online)

Abstract

Lung transplantation is currently considered as an ultimate live-saving treatment for selected patients suffering from end-stage pulmonary disease. Long-term survival, however, is hampered by chronic rejection, or chronic lung allograft dysfunction (CLAD). Recently, various phenotypes within CLAD have been identified, challenging the established clinical definition of bronchiolitis obliterans syndrome (BOS). Some patients with presumed BOS, for instance, demonstrate an important improvement in forced expiratory volume in the first second of expiration (FEV1) after treatment with azithromycin. These patients are characterized by the presence of excess (≥15%) bronchoalveolar lavage (BAL) neutrophils, in absence of concurrent infection. This phenotype of CLAD has been redefined as neutrophilic reversible allograft dysfunction (NRAD), and these patients generally have a very good prognosis after diagnosis. Another group of patients with CLAD develop a restrictive rather than an obstructive pulmonary function defect (defined as a decline in total lung capacity of at least 10%) and demonstrate persistent interstitial and ground-glass opacities on chest computed tomographic (CT) scan. This phenotype is called restrictive allograft syndrome (RAS), and patients with RAS have a much worse prognosis after diagnosis. This review further discusses both of these CLAD phenotypes that do not fit the classical definition of BOS. Potential pathophysiological mechanisms, etiology, diagnosis, prognosis, and treatments are discussed.

 
  • References

  • 1 Trulock EP, Christie JD, Edwards LB , et al. Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult lung and heart-lung transplantation report-2007. J Heart Lung Transplant 2007; 26 (8) 782-795
  • 2 Lee JC, Christie JD, Keshavjee S. Primary graft dysfunction: definition, risk factors, short- and long-term outcomes. Semin Respir Crit Care Med 2010; 31 (2) 161-171
  • 3 Colquhoun IW, Gascoigne AD, Au J, Corris PA, Hilton CJ, Dark JH. Airway complications after pulmonary transplantation. Ann Thorac Surg 1994; 57 (1) 141-145
  • 4 Davis WA, Finlen Copeland CA, Todd JL, Snyder LD, Martissa JA, Palmer SM. Spirometrically significant acute rejection increases the risk for BOS and death after lung transplantation. Am J Transplant 2012; 12 (3) 745-752
  • 5 Burton CM, Iversen M, Scheike T, Carlsen J, Andersen CB. Is lymphocytic bronchiolitis a marker of acute rejection? An analysis of 2,697 transbronchial biopsies after lung transplantation. J Heart Lung Transplant 2008; 27 (10) 1128-1134
  • 6 Estenne M, Maurer JR, Boehler A , et al. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J Heart Lung Transplant 2002; 21 (3) 297-310
  • 7 Chamberlain D, Maurer J, Chaparro C, Idolor L. Evaluation of transbronchial lung biopsy specimens in the diagnosis of bronchiolitis obliterans after lung transplantation. J Heart Lung Transplant 1994; 13 (6) 963-971
  • 8 DiGiovine B, Lynch III JP, Martinez FJ , et al. Bronchoalveolar lavage neutrophilia is associated with obliterative bronchiolitis after lung transplantation: role of IL-8. J Immunol 1996; 157 (9) 4194-4202
  • 9 Riise GC, Williams A, Kjellström C, Schersten H, Andersson BA, Kelly FJ. Bronchiolitis obliterans syndrome in lung transplant recipients is associated with increased neutrophil activity and decreased antioxidant status in the lung. Eur Respir J 1998; 12 (1) 82-88
  • 10 Henke JA, Golden JA, Yelin EH, Keith FA, Blanc PD. Persistent increases of BAL neutrophils as a predictor of mortality following lung transplant. Chest 1999; 115 (2) 403-409
  • 11 Riise GC, Andersson BA, Kjellström C , et al. Persistent high BAL fluid granulocyte activation marker levels as early indicators of bronchiolitis obliterans after lung transplant. Eur Respir J 1999; 14 (5) 1123-1130
  • 12 Zheng L, Walters EH, Ward C , et al. Airway neutrophilia in stable and bronchiolitis obliterans syndrome patients following lung transplantation. Thorax 2000; 55 (1) 53-59
  • 13 Neurohr C, Huppmann P, Samweber B , et al; Munich Lung Transplant Group. Prognostic value of bronchoalveolar lavage neutrophilia in stable lung transplant recipients. J Heart Lung Transplant 2009; 28 (5) 468-474
  • 14 Hübner RH, Meffert S, Mundt U , et al. Matrix metalloproteinase-9 in bronchiolitis obliterans syndrome after lung transplantation. Eur Respir J 2005; 25 (3) 494-501
  • 15 Behr J, Maier K, Braun B, Schwaiblmair M, Vogelmeier C. The Munich Lung Transplant Group. Evidence for oxidative stress in bronchiolitis obliterans syndrome after lung and heart-lung transplantation. Transplantation 2000; 69 (9) 1856-1860
  • 16 Gerhardt SG, McDyer JF, Girgis RE, Conte JV, Yang SC, Orens JB. Maintenance azithromycin therapy for bronchiolitis obliterans syndrome: results of a pilot study. Am J Respir Crit Care Med 2003; 168 (1) 121-125
  • 17 Gottlieb J, Szangolies J, Koehnlein T, Golpon H, Simon A, Welte T. Long-term azithromycin for bronchiolitis obliterans syndrome after lung transplantation. Transplantation 2008; 85 (1) 36-41
  • 18 Porhownik NR, Batobara W, Kepron W, Unruh HW, Bshouty Z. Effect of maintenance azithromycin on established bronchiolitis obliterans syndrome in lung transplant patients. Can Respir J 2008; 15 (4) 199-202
  • 19 Verleden GM, Dupont LJ. Azithromycin therapy for patients with bronchiolitis obliterans syndrome after lung transplantation. Transplantation 2004; 77 (9) 1465-1467
  • 20 Yates B, Murphy DM, Forrest IA , et al. Azithromycin reverses airflow obstruction in established bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2005; 172 (6) 772-775
  • 21 Shitrit D, Bendayan D, Gidon S, Saute M, Bakal I, Kramer MR. Long-term azithromycin use for treatment of bronchiolitis obliterans syndrome in lung transplant recipients. J Heart Lung Transplant 2005; 24 (9) 1440-1443
  • 22 Verleden GM, Vanaudenaerde BM, Dupont LJ, Van Raemdonck DE. Azithromycin reduces airway neutrophilia and interleukin-8 in patients with bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2006; 174 (5) 566-570
  • 23 Vanaudenaerde BM, Meyts I, Vos R , et al. A dichotomy in bronchiolitis obliterans syndrome after lung transplantation revealed by azithromycin therapy. Eur Respir J 2008; 32 (4) 832-843
  • 24 Verleden GM, Vos R, De Vleeschauwer SI , et al. Obliterative bronchiolitis following lung transplantation: from old to new concepts?. Transpl Int 2009; 22 (8) 771-779
  • 25 Vos R, Vanaudenaerde BM, Verleden SE , et al. A randomised controlled trial of azithromycin to prevent chronic rejection after lung transplantation. Eur Respir J 2011; 37 (1) 164-172
  • 26 Verleden GM, Vos R, Verleden SE , et al. Survival determinants in lung transplant patients with chronic allograft dysfunction. Transplantation 2011; 92 (6) 703-708
  • 27 Benden C, Boehler A. Long-term clarithromycin therapy in the management of lung transplant recipients. Transplantation 2009; 87 (10) 1538-1540
  • 28 Ibrahim RB, Abella EM, Chandrasekar PH. Tacrolimus-clarithromycin interaction in a patient receiving bone marrow transplantation. Ann Pharmacother 2002; 36 (12) 1971-1972
  • 29 Kunicki PK, Sobieszczańska-Małek M. Pharmacokinetic interaction between tacrolimus and clarithromycin in a heart transplant patient. Ther Drug Monit 2005; 27 (1) 107-108
  • 30 Vos R, Vanaudenaerde BM, Verleden SE , et al. Anti-inflammatory and immunomodulatory properties of azithromycin involved in treatment and prevention of chronic lung allograft rejection. Transplantation 2012; 94 (2) 101-109
  • 31 Verleden SE, Vos R, Mertens V , et al. Heterogeneity of chronic lung allograft dysfunction: insights from protein expression in broncho alveolar lavage. J Heart Lung Transplant 2011; 30 (6) 667-673
  • 32 D'Ovidio F, Mura M, Tsang M , et al. Bile acid aspiration and the development of bronchiolitis obliterans after lung transplantation. J Thorac Cardiovasc Surg 2005; 129 (5) 1144-1152
  • 33 Reynaud-Gaubert M, Marin V, Thirion X , et al. Upregulation of chemokines in bronchoalveolar lavage fluid as a predictive marker of post-transplant airway obliteration. J Heart Lung Transplant 2002; 21 (7) 721-730
  • 34 Riise GC, Ericson P, Bozinovski S, Yoshihara S, Anderson GP, Lindén A. Increased net gelatinase but not serine protease activity in bronchiolitis obliterans syndrome. J Heart Lung Transplant 2010; 29 (7) 800-807
  • 35 Verleden SE, Vandooren J, Vos R , et al. Azithromycin decreases MMP-9 expression in the airways of lung transplant recipients. Transpl Immunol 2011; 25 (2-3) 159-162
  • 36 Burlingham WJ, Love RB, Jankowska-Gan E , et al. IL-17-dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants. J Clin Invest 2007; 117 (11) 3498-3506
  • 37 Fan L, Benson HL, Vittal R , et al. Neutralizing IL-17 prevents obliterative bronchiolitis in murine orthotopic lung transplantation. Am J Transplant 2011; 11 (5) 911-922
  • 38 Vanaudenaerde BM, De Vleeschauwer SI, Vos R , et al. The role of the IL23/IL17 axis in bronchiolitis obliterans syndrome after lung transplantation. Am J Transplant 2008; 8 (9) 1911-1920
  • 39 Murphy DM, Forrest IA, Ward C , et al. Effect of azithromycin on primary bronchial epithelial cells derived from stable lung allografts. Thorax 2007; 62 (9) 834
  • 40 Vanaudenaerde BM, Wuyts WA, Geudens N , et al. Macrolides inhibit IL17-induced IL8 and 8-isoprostane release from human airway smooth muscle cells. Am J Transplant 2007; 7 (1) 76-82
  • 41 Stewart S, Fishbein MC, Snell GI , et al. Revision of the 1996 working formulation for the standardization of nomenclature in the diagnosis of lung rejection. J Heart Lung Transplant 2007; 26 (12) 1229-1242
  • 42 Ross DJ, Marchevsky A, Kramer M, Kass RM. “Refractoriness” of airflow obstruction associated with isolated lymphocytic bronchiolitis/bronchitis in pulmonary allografts. J Heart Lung Transplant 1997; 16 (8) 832-838
  • 43 Glanville AR, Aboyoun CL, Havryk A, Plit M, Rainer S, Malouf MA. Severity of lymphocytic bronchiolitis predicts long-term outcome after lung transplantation. Am J Respir Crit Care Med 2008; 177 (9) 1033-1040
  • 44 De Soyza A, Fisher AJ, Small T, Corris PA. Inhaled corticosteroids and the treatment of lymphocytic bronchiolitis following lung transplantation. Am J Respir Crit Care Med 2001; 164 (7) 1209-1212
  • 45 Chambers DC, Hodge S, Hodge G , et al. A novel approach to the assessment of lymphocytic bronchiolitis after lung transplantation—transbronchial brush. J Heart Lung Transplant 2011; 30 (5) 544-551
  • 46 Vos R, Vanaudenaerde BM, Verleden SE , et al. Bronchoalveolar lavage neutrophilia in acute lung allograft rejection and lymphocytic bronchiolitis. J Heart Lung Transplant 2010; 29 (11) 1259-1269
  • 47 de Jong PA, Dodd JD, Coxson HO , et al. Bronchiolitis obliterans following lung transplantation: early detection using computed tomographic scanning. Thorax 2006; 61 (9) 799-804
  • 48 Chamberlain D, Maurer J, Chaparro C, Idolor L. Evaluation of transbronchial lung biopsy specimens in the diagnosis of bronchiolitis obliterans after lung transplantation. J Heart Lung Transplant 1994; 13 (6) 963-971
  • 49 Sato M, Waddell TK, Wagnetz U , et al. Restrictive allograft syndrome (RAS): a novel form of chronic lung allograft dysfunction. J Heart Lung Transplant 2011; 30 (7) 735-742
  • 50 Martinu T, Howell DN, Davis RD, Steele MP, Palmer SM. Pathologic correlates of bronchiolitis obliterans syndrome in pulmonary retransplant recipients. Chest 2006; 129 (4) 1016-1023
  • 51 Burton CM, Iversen M, Carlsen J, Andersen CB. Interstitial inflammatory lesions of the pulmonary allograft: a retrospective analysis of 2697 transbronchial biopsies. Transplantation 2008; 86 (6) 811-819
  • 52 Sverzellati N, Zompatori M, Poletti V, Geddes DM, Hansell DM. Small chronic pneumothoraces and pulmonary parenchymal abnormalities after bone marrow transplantation. J Thorac Imaging 2007; 22 (3) 230-234
  • 53 von der Thüsen JH, Hansell DM, Tominaga M , et al. Pleuroparenchymal fibroelastosis in patients with pulmonary disease secondary to bone marrow transplantation. Mod Pathol 2011; 24 (12) 1633-1639
  • 54 Ofek E, Sato M, Saito T , et al. Restrictive allograft syndrome post lung transplantation is characterized by pleuroparenchymal fibroelastosis. Mod Pathol 2013; 26 (3) 350-356
  • 55 Vos R, Vanaudenaerde BM, De Vleeschauwer SI , et al. Follicular bronchiolitis: a rare cause of bronchiolitis obliterans syndrome after lung transplantation: a case report. Am J Transplant 2009; 9 (3) 644-650
  • 56 McManus TE, Milne DG, Whyte KF, Wilsher ML. Exudative bronchiolitis after lung transplantation. J Heart Lung Transplant 2008; 27 (3) 276-281
  • 57 Woodrow JP, Shlobin OA, Barnett SD, Burton N, Nathan SD. Comparison of bronchiolitis obliterans syndrome to other forms of chronic lung allograft dysfunction after lung transplantation. J Heart Lung Transplant 2010; 29 (10) 1159-1164
  • 58 Sato M, Hwang DM, Ohmori-Matsuda K , et al. Revisiting the pathologic finding of diffuse alveolar damage after lung transplantation. J Heart Lung Transplant 2012; 31 (4) 354-363
  • 59 Todd JL, Palmer SM. Bronchiolitis obliterans syndrome: the final frontier for lung transplantation. Chest 2011; 140 (2) 502-508
  • 60 Seibold MA, Wise AL, Speer MC , et al. A common MUC5B promoter polymorphism and pulmonary fibrosis. N Engl J Med 2011; 364 (16) 1503-1512
  • 61 Ohshimo S, Bonella F, Sommerwerck U , et al. Comparison of serum KL-6 versus bronchoalveolar lavage neutrophilia for the diagnosis of bronchiolitis obliterans in lung transplantation. J Heart Lung Transplant 2011; 30 (12) 1374-1380
  • 62 Kohno N, Kyoizumi S, Awaya Y, Fukuhara H, Yamakido M, Akiyama M. New serum indicator of interstitial pneumonitis activity: sialylated carbohydrate antigen KL-6. Chest 1989; 96 (1) 68-73
  • 63 Ohshimo S, Bonella F, Grammann N , et al. Serum KL-6 as a novel disease marker in adolescent and adult cystic fibrosis. Sarcoidosis Vasc Diffuse Lung Dis 2009; 26 (1) 47-53
  • 64 Fisher AJ, Rutherford RM, Bozzino J, Parry G, Dark JH, Corris PA. The safety and efficacy of total lymphoid irradiation in progressive bronchiolitis obliterans syndrome after lung transplantation. Am J Transplant 2005; 5 (3) 537-543
  • 65 Jaksch P, Scheed A, Keplinger M , et al. A prospective interventional study on the use of extracorporeal photopheresis in patients with bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant 2012; 31 (9) 950-957
  • 66 Verleden GM, Verleden SE, Vos R , et al. Montelukast for bronchiolitis obliterans syndrome after lung transplantation: a pilot study. Transpl Int 2011; 24 (7) 651-656
  • 67 Noble PW, Albera C, Bradford WZ , et al; CAPACITY Study Group. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 2011; 377 (9779) 1760-1769
  • 68 Nakazato H, Oku H, Yamane S, Tsuruta Y, Suzuki R. A novel anti-fibrotic agent pirfenidone suppresses tumor necrosis factor-alpha at the translational level. Eur J Pharmacol 2002; 446 (1-3) 177-185
  • 69 Dosanjh A, Ikonen T, Wan B, Morris RE. Pirfenidone: a novel anti-fibrotic agent and progressive chronic allograft rejection. Pulm Pharmacol Ther 2002; 15 (5) 433-437
  • 70 McKane BW, Fernandez F, Narayanan K , et al. Pirfenidone inhibits obliterative airway disease in a murine heterotopic tracheal transplant model. Transplantation 2004; 77 (5) 664-669
  • 71 Zhou H, Latham CW, Zander DS, Margolin SB, Visner GA. Pirfenidone inhibits obliterative airway disease in mouse tracheal allografts. J Heart Lung Transplant 2005; 24 (10) 1577-1585
  • 72 Liu H, Drew P, Gaugler AC, Cheng Y, Visner GA. Pirfenidone inhibits lung allograft fibrosis through L-arginine-arginase pathway. Am J Transplant 2005; 5 (6) 1256-1263
  • 73 Reams BD, Davis RD, Curl J, Palmer SM. Treatment of refractory acute rejection in a lung transplant recipient with campath 1H. Transplantation 2002; 74 (6) 903-904
  • 74 Reams BD, Musselwhite LW, Zaas DW , et al. Alemtuzumab in the treatment of refractory acute rejection and bronchiolitis obliterans syndrome after human lung transplantation. Am J Transplant 2007; 7 (12) 2802-2808
  • 75 Ruiz-Arguelles GJ, Ruiz-Delgado GJ, Moreno-Ford V. Re: Alemtuzumab-induced resolution of pulmonary noninfectious complications in a patient with chronic graft-versus-host disease. Biol Blood Marrow Transplant 2008; 14 (12) 1434-1435
  • 76 Kohno M, Perch M, Andersen E, Carlsen J, Andersen CB, Iversen M. Treatment of intractable interstitial lung injury with alemtuzumab after lung transplantation. Transplant Proc 2011; 43 (5) 1868-1870