Semin Respir Crit Care Med 2012; 33(06): 579-587
DOI: 10.1055/s-0032-1325617
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Airway Hyperresponsiveness: New Insights into the Pathogenesis

Marek Lommatzsch
1   Department of Pneumology, University of Rostock, Rostock, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
09 October 2012 (online)

Abstract

Airway hyperresponsiveness (AHR) is the most characteristic clinical feature of asthma. The pathogenesis of AHR in asthma is characterized by a variety of epithelial, microbial, and inflammatory triggers on one hand and abnormalities of effector structures in the airways such as smooth muscle cells, blood vessels, and nerves on the other hand. Obesity is increasingly recognized as an important additional factor in the diagnosis and the pathogenesis of AHR in asthma. It is important to note that structural changes in the asthmatic airway can persist in the absence of inflammation. This may be one reason for the observation that potent new antiinflammatory drugs for the treatment of asthma have only little impact on AHR. New therapeutic strategies are, therefore, needed to modulate structural and functional changes in the airways, especially in patients with treatment-resistant severe asthma.

 
  • References

  • 1 Lemanske Jr RF, Busse WW. Asthma: clinical expression and molecular mechanisms. J Allergy Clin Immunol 2010; 125 (2, Suppl 2) S95-S102
  • 2 Larj MJ, Bleecker ER. Therapeutic responses in asthma and COPD. Corticosteroids. Chest 2004; 126 (2, Suppl) 138S-149S , discussion 159S–161S
  • 3 Koskela HO, Hyvärinen L, Brannan JD, Chan HK, Anderson SD. Sensitivity and validity of three bronchial provocation tests to demonstrate the effect of inhaled corticosteroids in asthma. Chest 2003; 124 (4) 1341-1349
  • 4 Erin EM, Zacharasiewicz AS, Nicholson GC , et al. Rapid effect of inhaled ciclesonide in asthma: a randomized, placebo-controlled study. Chest 2008; 134 (4) 740-745
  • 5 Busse WW, Lemanske Jr RF. Asthma. N Engl J Med 2001; 344 (5) 350-362
  • 6 Cockcroft DW, Davis BE. Mechanisms of airway hyperresponsiveness. J Allergy Clin Immunol 2006; 118 (3) 551-559 , quiz 560–561
  • 7 Leckie MJ, ten Brinke A, Khan J , et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 2000; 356 (9248) 2144-2148
  • 8 Haldar P, Brightling CE, Hargadon B , et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 2009; 360 (10) 973-984
  • 9 Pauwels R, Joos G, Van der Straeten M. Bronchial hyperresponsiveness is not bronchial hyperresponsiveness is not bronchial asthma. Clin Allergy 1988; 18 (4) 317-321
  • 10 Cockcroft DW. Direct challenge tests: airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest 2010; 138 (2, Suppl) 18S-24S
  • 11 Anderson SD. Indirect challenge tests: airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest 2010; 138 (2, Suppl) 25S-30S
  • 12 Lommatzsch M, Schloetcke K, Klotz J , et al. Brain-derived neurotrophic factor in platelets and airflow limitation in asthma. Am J Respir Crit Care Med 2005; 171 (2) 115-120
  • 13 Koskela HO, Hyvärinen L, Brannan JD, Chan HK, Anderson SD. Responsiveness to three bronchial provocation tests in patients with asthma. Chest 2003; 124 (6) 2171-2177
  • 14 Bakirtas A, Turktas I. Methacholine and adenosine 5′-monophosphate challenges in preschool children with cough-variant and classic asthma. Pediatr Pulmonol 2007; 42 (10) 973-979
  • 15 Suh DI, Lee JK, Kim CK, Koh YY. Bronchial hyperresponsiveness to methacholine and adenosine 5′-monophosphate, and the presence and degree of atopy in young children with asthma. Clin Exp Allergy 2011; 41 (3) 338-345
  • 16 Sylvester KP, O'Connor BJ, Farebrother HM, Rafferty GF, Greenough A. Cold air and exercise challenge—influence of minute ventilation. J Asthma 2007; 44 (2) 143-147
  • 17 Grainge CL, Lau LC, Ward JA , et al. Effect of bronchoconstriction on airway remodeling in asthma. N Engl J Med 2011; 364 (21) 2006-2015
  • 18 Gern JE. Barnyard microbes and childhood asthma. N Engl J Med 2011; 364 (8) 769-770
  • 19 Ege MJ, Mayer M, Normand AC , et al; GABRIELA Transregio 22 Study Group. Exposure to environmental microorganisms and childhood asthma. N Engl J Med 2011; 364 (8) 701-709
  • 20 Holgate ST. The sentinel role of the airway epithelium in asthma pathogenesis. Immunol Rev 2011; 242 (1) 205-219
  • 21 Al-Muhsen S, Johnson JR, Hamid Q. Remodeling in asthma. J Allergy Clin Immunol 2011; 128 (3) 451-462 , quiz 463–464
  • 22 Nakao A, Sagara H, Setoguchi Y , et al. Expression of Smad7 in bronchial epithelial cells is inversely correlated to basement membrane thickness and airway hyperresponsiveness in patients with asthma. J Allergy Clin Immunol 2002; 110 (6) 873-878
  • 23 Hahn C, Islamian AP, Renz H, Nockher WA. Airway epithelial cells produce neurotrophins and promote the survival of eosinophils during allergic airway inflammation. J Allergy Clin Immunol 2006; 117 (4) 787-794
  • 24 Sidhu SS, Yuan S, Innes AL , et al. Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma. Proc Natl Acad Sci U S A 2010; 107 (32) 14170-14175
  • 25 Halwani R, Al-Abri J, Beland M , et al. CC and CXC chemokines induce airway smooth muscle proliferation and survival. J Immunol 2011; 186 (7) 4156-4163
  • 26 Lambrecht BN, Hammad H. The role of dendritic and epithelial cells as master regulators of allergic airway inflammation. Lancet 2010; 376 (9743) 835-843
  • 27 Lambrecht BN, Hammad H. Biology of lung dendritic cells at the origin of asthma. Immunity 2009; 31 (3) 412-424
  • 28 Lambrecht BN, Hammad H. Taking our breath away: dendritic cells in the pathogenesis of asthma. Nat Rev Immunol 2003; 3 (12) 994-1003
  • 29 van Rijt LS, Vos N, Willart M , et al. Persistent activation of dendritic cells after resolution of allergic airway inflammation breaks tolerance to inhaled allergens in mice. Am J Respir Crit Care Med 2011; 184 (3) 303-311
  • 30 Bratke K, Lommatzsch M, Julius P , et al. Dendritic cell subsets in human bronchoalveolar lavage fluid after segmental allergen challenge. Thorax 2007; 62 (2) 168-175
  • 31 Dreschler K, Bratke K, Petermann S , et al. Impact of immunotherapy on blood dendritic cells in patients with Hymenoptera venom allergy. J Allergy Clin Immunol 2011; 127 (2) 487-494 , e1–e3
  • 32 Lambrecht BN. Lung dendritic cells: targets for therapy in allergic disease. Curr Mol Med 2008; 8 (5) 393-400
  • 33 Robinson DS. The role of the T cell in asthma. J Allergy Clin Immunol 2010; 126 (6) 1081-1091 , quiz 1092–1093
  • 34 Lloyd CM, Hawrylowicz CM. Regulatory T cells in asthma. Immunity 2009; 31 (3) 438-449
  • 35 Hartl D, Koller B, Mehlhorn AT , et al. Quantitative and functional impairment of pulmonary CD4+ CD25hi regulatory T cells in pediatric asthma. J Allergy Clin Immunol 2007; 119 (5) 1258-1266
  • 36 Akbari O, Faul JL, Hoyte EG , et al. CD4+ invariant T-cell-receptor+ natural killer T cells in bronchial asthma. N Engl J Med 2006; 354 (11) 1117-1129
  • 37 Vijayanand P, Seumois G, Pickard C , et al. Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. N Engl J Med 2007; 356 (14) 1410-1422
  • 38 Thomas SY, Chyung YH, Luster AD. Natural killer T cells are not the predominant T cell in asthma and likely modulate, not cause, asthma. J Allergy Clin Immunol 2010; 125 (5) 980-984
  • 39 Bratke K, Julius P, Virchow JC. Invariant natural killer T cells in obstructive pulmonary diseases. N Engl J Med 2007; 357 (2) 194 , author reply 194–195
  • 40 Wenzel S, Holgate ST. The mouse trap: it still yields few answers in asthma. Am J Respir Crit Care Med 2006; 174 (11) 1173-1176 , discussion 1176–1178
  • 41 Lommatzsch M, Julius P, Kuepper M , et al. The course of allergen-induced leukocyte infiltration in human and experimental asthma. J Allergy Clin Immunol 2006; 118 (1) 91-97
  • 42 Lommatzsch M, Julius P, Virchow JC. Mice running late: T-cell kinetics in models of asthma. Am J Respir Crit Care Med 2007; 175 (5) 522b-523
  • 43 Corren J. Cytokine inhibition in severe asthma: current knowledge and future directions. Curr Opin Pulm Med 2011; 17 (1) 29-33
  • 44 Holgate S, Smith N, Massanari M, Jimenez P. Effects of omalizumab on markers of inflammation in patients with allergic asthma. Allergy 2009; 64 (12) 1728-1736
  • 45 Holgate S, Buhl R, Bousquet J, Smith N, Panahloo Z, Jimenez P. The use of omalizumab in the treatment of severe allergic asthma: a clinical experience update. Respir Med 2009; 103 (8) 1098-1113
  • 46 Busse WW, Morgan WJ, Gergen PJ , et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med 2011; 364 (11) 1005-1015
  • 47 Nair P, Pizzichini MM, Kjarsgaard M , et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med 2009; 360 (10) 985-993
  • 48 Tomkinson A, Tepper J, Morton M , et al. Inhaled vs subcutaneous effects of a dual IL-4/IL-13 antagonist in a monkey model of asthma. Allergy 2010; 65 (1) 69-77
  • 49 Corren J, Lemanske RF, Hanania NA , et al. Lebrikizumab treatment in adults with asthma. N Engl J Med 2011; 365 (12) 1088-1098
  • 50 Dougherty RH, Sidhu SS, Raman K , et al. Accumulation of intraepithelial mast cells with a unique protease phenotype in T(H)2-high asthma. J Allergy Clin Immunol 2010; 125 (5) 1046-1053 , e8
  • 51 Bradding P, Walls AF, Holgate ST. The role of the mast cell in the pathophysiology of asthma. J Allergy Clin Immunol 2006; 117 (6) 1277-1284
  • 52 Ito A, Hagiyama M, Oonuma J. Nerve-mast cell and smooth muscle-mast cell interaction mediated by cell adhesion molecule-1, CADM1. J Smooth Muscle Res 2008; 44 (2) 83-93
  • 53 Brightling CE, Bradding P. The re-emergence of the mast cell as a pivotal cell in asthma pathogenesis. Curr Allergy Asthma Rep 2005; 5 (2) 130-135
  • 54 Siddiqui S, Mistry V, Doe C , et al. Airway hyperresponsiveness is dissociated from airway wall structural remodeling. J Allergy Clin Immunol 2008; 122 (2) 335-341 , 341, e1–e3
  • 55 Graff-Lonnevig V, Hedlin G. The effect of ketotifen on bronchial hyperreactivity in childhood asthma. J Allergy Clin Immunol 1985; 76 (1) 59-63
  • 56 Holgate ST, Noonan M, Chanez P , et al. Efficacy and safety of etanercept in moderate-to-severe asthma: a randomised, controlled trial. Eur Respir J 2011; 37 (6) 1352-1359
  • 57 Bush A, Zar HJ. WHO universal definition of severe asthma. Curr Opin Allergy Clin Immunol 2011; 11 (2) 115-121
  • 58 Pascual RM, Peters SP. The irreversible component of persistent asthma. J Allergy Clin Immunol 2009; 124 (5) 883-890 , quiz 891–892
  • 59 Proskocil BJ, Fryer AD. Beta2-agonist and anticholinergic drugs in the treatment of lung disease. Proc Am Thorac Soc 2005; 2 (4) 305-310 , discussion 311–312
  • 60 Canning BJ, Fischer A. Neural regulation of airway smooth muscle tone. Respir Physiol 2001; 125 (1-2) 113-127
  • 61 Felder CC. Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 1995; 9 (8) 619-625
  • 62 Kummer W, Lips KS, Pfeil U. The epithelial cholinergic system of the airways. Histochem Cell Biol 2008; 130 (2) 219-234
  • 63 Barnes PJ. Overview of neural mechanisms in asthma. Pulm Pharmacol 1995; 8 (4-5) 151-159
  • 64 Lommatzsch M, Virchow JC. The neural underpinnings of asthma. J Allergy Clin Immunol 2007; 119 (1) 254-255 , author reply 255
  • 65 Undem BJ, Carr MJ. The role of nerves in asthma. Curr Allergy Asthma Rep 2002; 2 (2) 159-165
  • 66 Lommatzsch M, Braun A, Renz H. Neurotrophins in allergic airway dysfunction: what the mouse model is teaching us. Ann N Y Acad Sci 2003; 992: 241-249
  • 67 Verhein KC, Fryer AD, Jacoby DB. Neural control of airway inflammation. Curr Allergy Asthma Rep 2009; 9 (6) 484-490
  • 68 Fryer AD, Stein LH, Nie Z , et al. Neuronal eotaxin and the effects of CCR3 antagonist on airway hyperreactivity and M2 receptor dysfunction. J Clin Invest 2006; 116 (1) 228-236
  • 69 Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001; 24: 677-736
  • 70 Prakash Y, Thompson MA, Meuchel L , et al. Neurotrophins in lung health and disease. Expert Rev Respir Med 2010; 4 (3) 395-411
  • 71 Lommatzsch M, Zingler D, Schuhbaeck K , et al. The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol Aging 2005; 26 (1) 115-123
  • 72 Fujimura H, Altar CA, Chen R , et al. Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost 2002; 87 (4) 728-734
  • 73 Braun A, Lommatzsch M, Mannsfeldt A , et al. Cellular sources of enhanced brain-derived neurotrophic factor production in a mouse model of allergic inflammation. Am J Respir Cell Mol Biol 1999; 21 (4) 537-546
  • 74 Braun A, Lommatzsch M, Neuhaus-Steinmetz U , et al. Brain-derived neurotrophic factor (BDNF) contributes to neuronal dysfunction in a model of allergic airway inflammation. Br J Pharmacol 2004; 141 (3) 431-440
  • 75 Bennedich Kahn L, Gustafsson LE, Olgart Höglund C. Brain-derived neurotrophic factor enhances histamine-induced airway responses and changes levels of exhaled nitric oxide in guinea pigs in vivo. Eur J Pharmacol 2008; 595 (1-3) 78-83
  • 76 Prakash YS, Thompson MA, Pabelick CM. Brain-derived neurotrophic factor in TNF-alpha modulation of Ca2+ in human airway smooth muscle. Am J Respir Cell Mol Biol 2009; 41 (5) 603-611
  • 77 Aravamudan B, Thompson M, Pabelick C, Prakash YS. Brain derived neurotrophic factor induces proliferation of human airway smooth muscle cells. J Cell Mol Med 2012; 16 (4) 812-823
  • 78 Meuchel LW, Stewart A, Smelter DF , et al. Neurokinin-neurotrophin interactions in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 301 (1) L91-L98
  • 79 Virchow JC, Julius P, Lommatzsch M, Luttmann W, Renz H, Braun A. Neurotrophins are increased in bronchoalveolar lavage fluid after segmental allergen provocation. Am J Respir Crit Care Med 1998; 158 (6) 2002-2005
  • 80 Kornerup KN, Page CP. The role of platelets in the pathophysiology of asthma. Platelets 2007; 18 (5) 319-328
  • 81 Pitchford SC, Momi S, Baglioni S , et al. Allergen induces the migration of platelets to lung tissue in allergic asthma. Am J Respir Crit Care Med 2008; 177 (6) 604-612
  • 82 Lommatzsch M, Lindner Y, Edner A, Bratke K, Kuepper M, Virchow JC. Adverse effects of salmeterol in asthma: a neuronal perspective. Thorax 2009; 64 (9) 763-769
  • 83 Cazorla M, Prémont J, Mann A, Girard N, Kellendonk C, Rognan D. Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J Clin Invest 2011; 121 (5) 1846-1857
  • 84 Eibl JK, Chapelsky SA, Ross GM. Multipotent neurotrophin antagonist targets brain-derived neurotrophic factor and nerve growth factor. J Pharmacol Exp Ther 2010; 332 (2) 446-454
  • 85 Stoll P, Plessow A, Bratke K, Virchow JC, Lommatzsch M. Differential effect of clopidogrel and aspirin on the release of BDNF from platelets. J Neuroimmunol 2011; 238 (1-2) 104-106
  • 86 Ramalho R, Soares R, Couto N, Moreira A. Tachykinin receptors antagonism for asthma: a systematic review. BMC Pulm Med 2011; 11: 41
  • 87 Caceres AI, Brackmann M, Elia MD , et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci U S A 2009; 106 (22) 9099-9104
  • 88 Grace MS, Belvisi MG. TRPA1 receptors in cough. Pulm Pharmacol Ther 2011; 24 (3) 286-288
  • 89 Bara I, Ozier A, Tunon de Lara JM, Marthan R, Berger P. Pathophysiology of bronchial smooth muscle remodelling in asthma. Eur Respir J 2010; 36 (5) 1174-1184
  • 90 Dekkers BG, Maarsingh H, Meurs H, Gosens R. Airway structural components drive airway smooth muscle remodeling in asthma. Proc Am Thorac Soc 2009; 6 (8) 683-692
  • 91 An SS, Bai TR, Bates JH , et al. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. Eur Respir J 2007; 29 (5) 834-860
  • 92 Oliver MN, Fabry B, Marinkovic A, Mijailovich SM, Butler JP, Fredberg JJ. Airway hyperresponsiveness, remodeling, and smooth muscle mass: right answer, wrong reason?. Am J Respir Cell Mol Biol 2007; 37 (3) 264-272
  • 93 James AL, Bai TR, Mauad T , et al. Airway smooth muscle thickness in asthma is related to severity but not duration of asthma. Eur Respir J 2009; 34 (5) 1040-1045
  • 94 Araujo BB, Dolhnikoff M, Silva LF , et al. Extracellular matrix components and regulators in the airway smooth muscle in asthma. Eur Respir J 2008; 32 (1) 61-69
  • 95 Woodruff PG, Dolganov GM, Ferrando RE , et al. Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am J Respir Crit Care Med 2004; 169 (9) 1001-1006
  • 96 Benayoun L, Druilhe A, Dombret MC, Aubier M, Pretolani M. Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med 2003; 167 (10) 1360-1368
  • 97 Ma X, Cheng Z, Kong H , et al. Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects. Am J Physiol Lung Cell Mol Physiol 2002; 283 (6) L1181-L1189
  • 98 Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID. Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med 2002; 346 (22) 1699-1705
  • 99 Brightling CE, Ammit AJ, Kaur D , et al. The CXCL10/CXCR3 axis mediates human lung mast cell migration to asthmatic airway smooth muscle. Am J Respir Crit Care Med 2005; 171 (10) 1103-1108
  • 100 Gosens R, Roscioni SS, Dekkers BG , et al. Pharmacology of airway smooth muscle proliferation. Eur J Pharmacol 2008; 585 (2-3) 385-397
  • 101 Gosens R, Zaagsma J, Grootte Bromhaar M, Nelemans A, Meurs H. Acetylcholine: a novel regulator of airway smooth muscle remodelling?. Eur J Pharmacol 2004; 500 (1-3) 193-201
  • 102 Durrani SR, Viswanathan RK, Busse WW. What effect does asthma treatment have on airway remodeling? Current perspectives. J Allergy Clin Immunol 2011; 128 (3) 439-448 , quiz 449–450
  • 103 Peters SP, Kunselman SJ, Icitovic N , et al; National Heart, Lung, and Blood Institute Asthma Clinical Research Network. Tiotropium bromide step-up therapy for adults with uncontrolled asthma. N Engl J Med 2010; 363 (18) 1715-1726
  • 104 Cox G, Thomson NC, Rubin AS , et al; AIR Trial Study Group. Asthma control during the year after bronchial thermoplasty. N Engl J Med 2007; 356 (13) 1327-1337
  • 105 Castro M, Rubin AS, Laviolette M , et al; AIR2 Trial Study Group. Effectiveness and safety of bronchial thermoplasty in the treatment of severe asthma: a multicenter, randomized, double-blind, sham-controlled clinical trial. Am J Respir Crit Care Med 2010; 181 (2) 116-124
  • 106 Thomson NC, Rubin AS, Niven RM , et al; AIR Trial Study Group. Long-term (5 year) safety of bronchial thermoplasty: Asthma Intervention Research (AIR) trial. BMC Pulm Med 2011; 11: 8
  • 107 Corren J. Small airways disease in asthma. Curr Allergy Asthma Rep 2008; 8 (6) 533-539
  • 108 Salerno FG, Barbaro MP, Toungoussova O, Carpagnano E, Guido P, Spanevello A. The extracellular matrix of the lung and airway responsiveness in asthma. Monaldi Arch Chest Dis 2009; 71 (1) 27-30
  • 109 Pini L, Hamid Q, Shannon J , et al. Differences in proteoglycan deposition in the airways of moderate and severe asthmatics. Eur Respir J 2007; 29 (1) 71-77
  • 110 An SS, Fredberg JJ. Biophysical basis for airway hyperresponsiveness. Can J Physiol Pharmacol 2007; 85 (7) 700-714
  • 111 Park HS, Kim SY, Kim SR, Lee YC. Targeting abnormal airway vascularity as a therapeutical strategy in asthma. Respirology 2010; 15 (3) 459-471
  • 112 Detoraki A, Granata F, Staibano S, Rossi FW, Marone G, Genovese A. Angiogenesis and lymphangiogenesis in bronchial asthma. Allergy 2010; 65 (8) 946-958
  • 113 Zanini A, Chetta A, Imperatori AS, Spanevello A, Olivieri D. The role of the bronchial microvasculature in the airway remodelling in asthma and COPD. Respir Res 2010; 11: 132
  • 114 Finucane MM, Stevens GA, Cowan MJ , et al; Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Body Mass Index). National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet 2011; 377 (9765) 557-567
  • 115 Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond) 2008; 32 (9) 1431-1437
  • 116 Shore SA. Obesity and asthma: possible mechanisms. J Allergy Clin Immunol 2008; 121 (5) 1087-1093 , quiz 1094–1095
  • 117 Shore SA, Johnston RA. Obesity and asthma. Pharmacol Ther 2006; 110 (1) 83-102
  • 118 Ding DJ, Martin JG, Macklem PT. Effects of lung volume on maximal methacholine-induced bronchoconstriction in normal humans. J Appl Physiol 1987; 62 (3) 1324-1330
  • 119 Boulet LP, Turcotte H, Boulet G, Simard B, Robichaud P. Deep inspiration avoidance and airway response to methacholine: influence of body mass index. Can Respir J 2005; 12 (7) 371-376
  • 120 Skloot G, Togias A. Bronchodilation and bronchoprotection by deep inspiration and their relationship to bronchial hyperresponsiveness. Clin Rev Allergy Immunol 2003; 24 (1) 55-72
  • 121 McCallister JW, Parsons JP, Mastronarde JG. The relationship between gastroesophageal reflux and asthma: an update. Ther Adv Respir Dis 2011; 5 (2) 143-150
  • 122 Thomsen SF, Duffy DL, Kyvik KO, Skytthe A, Backer V. Risk of asthma in adult twins with type 2 diabetes and increased body mass index. Allergy 2011; 66 (4) 562-568
  • 123 Lafond C, Sériès F, Lemière C. Impact of CPAP on asthmatic patients with obstructive sleep apnoea. Eur Respir J 2007; 29 (2) 307-311
  • 124 Torchio R, Gobbi A, Gulotta C , et al. Mechanical effects of obesity on airway responsiveness in otherwise healthy humans. J Appl Physiol 2009; 107 (2) 408-416
  • 125 Lommatzsch M, Julius P, Virchow JC. Tiotropium step-up therapy in asthma. N Engl J Med 2011; 364 (6) 578 , author reply 578–579