Klin Monbl Augenheilkd 2012; 229(12): 1178-1184
DOI: 10.1055/s-0032-1315286
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Aktuelle und zukünftige Therapieoptionen bei Erkrankungen der Limbusstammzellen

Current and Future Therapeutic Options in Limbal Stem Cell Insufficiency
P. Eberwein
1   Augenheilkunde, Universitätsklinik Freiburg
,
T. Reinhard
1   Augenheilkunde, Universitätsklinik Freiburg
› Author Affiliations
Further Information

Publication History

eingereicht 20 July 2012

akzeptiert 02 August 2012

Publication Date:
15 October 2012 (online)

Zusammenfassung

Die Limbusstammzelltransplantation stellt eine der größten Herausforderungen in der chirurgischen Therapie von Augenoberflächenerkrankungen dar. Während Patienten mit einseitiger oder partieller Limbusstammzellinsuffizienz (LSI) mit autologen lamellären Limbustransplantaten vom Partnerauge versorgt werden, kann bei fortgeschrittener beidseitiger, aber noch partieller LSI eine Ex-vivo-Expansion autologer Limbusstammzellen auf Amnionmembran durchgeführt werden. Diese Technik wurde in den letzten Jahren im Bereich der Substrate, auf denen die Zellen wachsen, weiterentwickelt. Dagegen kann die beidseitige komplette LSI nur durch Transplantation allogenen Limbusgewebes behandelt werden, was immunologische Risiken birgt, jedoch durch den Einsatz von Mitomycin C und Amnionmembran verbessert werden konnte. Ob dieses Verfahren in Zukunft durch die Transplantation ex vivo expandierter oraler Mukosa als Ersatz des kornealen Epithels abgelöst wird, müssen zukünftige Studien noch klären. Während rein experimentelle Ansätze zur Transdifferenzierung von Knochenmarksstammzellen zu epithelialen Zellen als nicht durchführbar verworfen wurden, könnte die Verwendung von transdifferenzierten Haarfollikelstammzellen als Ersatz für korneales Epithel vielversprechender sein. Diese Versuche reichen aktuell jedoch noch nicht über das In-vitro-Stadium hinaus.

Abstract

Therapy for limbal stem cell insufficiency (LSCI) is one of the most challenging tasks in ocular surface surgery. Partial and unilateral LSCI can be treated by fractionated abrasion or autologous limbal stem cell transplantation from the fellow eye. In cases of advanced bilateral and partial LSCI, transplantation of ex vivo expanded sheets of limbal stem cells on amniotic membrane or fibrin may be performed. All patients with complete bilateral LSCI must rely on allogenic limbal stem cell transplantation comprising higher immunological risks. Progress using this technique has been achieved by the application of mitomycin C and amniotic membrane. Alternatively, transplantation of ex vivo expanded oral mucosal sheets may be used in bilateral LSCI, but only few long-term data are available on this technique as yet. While experimental attempts to use transdifferentiated bone marrow stem cells as a substitute for corneal epithelial cells have been without success, transdifferentiation of hair follicle stem cells to corneal epithelial cells may be more promising due to the identical lineage. But these experiments have not gone beyond the in vitro stage yet.

 
  • Literatur

  • 1 Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 1986; 103: 49-62
  • 2 Tseng SC, Tsai RJ. Limbal transplantation for ocular surface reconstruction – a review. Fortschr Ophthalmol 1991; 88: 236-242
  • 3 Chen JJ, Tseng SC. Corneal epithelial wound healing in partial limbal deficiency. Invest Ophthalmol Vis Sci 1990; 31: 1301-1314
  • 4 Huang AJ, Tseng SC. Corneal epithelial wound healing in the absence of limbal epithelium. Invest Ophthalmol Vis Sci 1991; 32: 96-105
  • 5 Kruse FE, Tseng SC. [The limbus epithelium in vitro]. Fortschr Ophthalmol 1991; 88: 107-112
  • 6 Eberwein P, Reinhard T. [Perspectives and current state in limbal stem cell transplantation]. Ophthalmologe 2011; 108: 840-845
  • 7 Thoft RA, Wiley LA, Sundarraj N. The multipotential cells of the limbus. Eye (Lond) 1989; 3: 109-113
  • 8 Chen JJ, Tseng SC. Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium. Invest Ophthalmol Vis Sci 1991; 32: 2219-2233
  • 9 Cotsarelis G, Cheng SZ, Dong G et al. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 1989; 57: 201-209
  • 10 Tseng SC. Concept and application of limbal stem cells. Eye (Lond) 1989; 3: 141-157
  • 11 Dua HS, Azuara-Blanco A. Limbal stem cells of the corneal epithelium. Surv Ophthalmol 2000; 44: 415-425
  • 12 Dua HS, Saini JS, Azuara-Blanco A et al. Limbal stem cell deficiency: concept, aetiology, clinical presentation, diagnosis and management. Indian J Ophthalmol 2000; 48: 83-92
  • 13 Espana EM, Kawakita T, Romano A et al. Stromal niche controls the plasticity of limbal and corneal epithelial differentiation in a rabbit model of recombined tissue. Invest Ophthalmol Vis Sci 2003; 44: 5130-5135
  • 14 Schlotzer-Schrehardt U, Kruse FE. Identification and characterization of limbal stem cells. Exp Eye Res 2005; 81: 247-264
  • 15 Schlotzer-Schrehardt U, Dietrich T, Saito K et al. Characterization of extracellular matrix components in the limbal epithelial stem cell compartment. Exp Eye Res 2007; 85: 845-860
  • 16 Dua HS, Shanmuganathan VA, Powell-Richards AO et al. Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol 2005; 89: 529-532
  • 17 Shanmuganathan VA, Foster T, Kulkarni BB et al. Morphological characteristics of the limbal epithelial crypt. Br J Ophthalmol 2007; 91: 514-519
  • 18 Yeung AM, Schlotzer-Schrehardt U, Kulkarni B et al. Limbal epithelial crypt: a model for corneal epithelial maintenance and novel limbal regional variations. Arch Ophthalmol 2008; 126: 665-669
  • 19 Dua HS. The conjunctiva in corneal epithelial wound healing. Br J Ophthalmol 1998; 82: 1407-1411
  • 20 Miri A, Al-Deiri B, Dua HS. Long-term outcomes of autolimbal and allolimbal transplants. Ophthalmology 2010; 117: 1207-1213
  • 21 Grueterich M, Espana EM, Tseng SC. Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. Surv Ophthalmol 2003; 48: 631-646
  • 22 Grueterich M, Tseng SC. Human limbal progenitor cells expanded on intact amniotic membrane ex vivo. Arch Ophthalmol 2002; 120: 783-790
  • 23 Meller D, Pires RT, Tseng SC. Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. Br J Ophthalmol 2002; 86: 463-471
  • 24 Tseng SC, Meller D, Anderson DF et al. Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane for treating corneal diseases with total limbal stem cell deficiency. Adv Exp Med Biol 2002; 506: 1323-1334
  • 25 Rama P, Bonini S, Lambiase A et al. Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 2001; 72: 1478-1485
  • 26 Rama P, Matuska S, Paganoni G et al. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 2010; 363: 147-155
  • 27 Kawakita T, Shimmura S, Hornia A et al. Stratified epithelial sheets engineered from a single adult murine corneal/limbal progenitor cell. J Cell Mol Med 2008; 12: 1303-1316
  • 28 Meller D, Dabul V, Tseng SC. Expansion of conjunctival epithelial progenitor cells on amniotic membrane. Exp Eye Res 2002; 74: 537-545
  • 29 Meller D, Fuchsluger T, Pauklin M et al. Ocular surface reconstruction in graft-versus-host disease with HLA-identical living-related allogeneic cultivated limbal epithelium after hematopoietic stem cell transplantation from the same donor. Cornea 2009; 28: 233-236
  • 30 Pauklin M, Fuchsluger TA, Westekemper H et al. Midterm results of cultivated autologous and allogeneic limbal epithelial transplantation in limbal stem cell deficiency. Dev Ophthalmol 2010; 45: 57-70
  • 31 Grueterich M, Espana EM, Tseng SC. Modulation of keratin and connexin expression in limbal epithelium expanded on denuded amniotic membrane with and without a 3 T3 fibroblast feeder layer. Invest Ophthalmol Vis Sci 2003; 44: 4230-4236
  • 32 Selver OB, Barash A, Ahmed M et al. ABCG2-dependent dye exclusion activity and clonal potential in epithelial cells continuously growing for 1 month from limbal explants. Invest Ophthalmol Vis Sci 2011; 52: 4330-4337
  • 33 Kolli S, Lako M, Figueiredo F et al. Loss of corneal epithelial stem cell properties in outgrowths from human limbal explants cultured on intact amniotic membrane. Regen Med 2008; 3: 329-342
  • 34 Tsai RJ, Tsai RY. Ex vivo expansion of corneal stem cells on amniotic membrane and their outcome. Eye Contact Lens 2010; 36: 305-309
  • 35 Li W, Hayashida Y, He H et al. The fate of limbal epithelial progenitor cells during explant culture on intact amniotic membrane. Invest Ophthalmol Vis Sci 2007; 48: 605-613
  • 36 Li W, Hayashida Y, Chen YT et al. Niche regulation of corneal epithelial stem cells at the limbus. Cell Res 2007; 17: 26-36
  • 37 Stepp MA, Zieske JD. The corneal epithelial stem cell niche. Ocul Surf 2005; 3: 15-26
  • 38 Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science 2005; 310: 1139-1143
  • 39 Eberwein P, Steinberg T, Schulz S et al. Expression of keratinocyte biomarkers is governed by environmental biomechanics. Eur J Cell Biol 2011; 90: 1029-1040
  • 40 Reinhard T, Kontopoulos T, Wernet P et al. [Long-term results of homologous penetrating limbokeratoplasty in total limbal stem cell insufficiency after chemical/thermal burns]. Ophthalmologe 2004; 101: 682-687
  • 41 Reinhard T, Spelsberg H, Henke L et al. Long-term results of allogeneic penetrating limbo-keratoplasty in total limbal stem cell deficiency. Ophthalmology 2004; 111: 775-782
  • 42 Reinhard T, Sundmacher R, Spelsberg H et al. Homologous penetrating central limbo-keratoplasty (HPCLK) in bilateral limbal stem cell insufficiency. Acta Ophthalmol Scand 1999; 77: 663-667
  • 43 Spelsberg H, Reinhard T, Henke L et al. Penetrating limbo-keratoplasty for granular and lattice corneal dystrophy: survival of donor limbal stem cells and intermediate-term clinical results. Ophthalmology 2004; 111: 1528-1533
  • 44 Reinhard T, Sundmacher R, Heering P. Systemic ciclosporin A in high-risk keratoplasties. Graefes Arch Clin Exp Ophthalmol 1996; 234 Suppl 1: S115-121
  • 45 Reinshagen H, Auw-Haedrich C, Sorg RV et al. Corneal surface reconstruction using adult mesenchymal stem cells in experimental limbal stem cell deficiency in rabbits. Acta Ophthalmol 2011; 89: 741-748
  • 46 Sundmacher R, Reinhard T. Central corneolimbal transplantation under systemic ciclosporin A cover for severe limbal stem cell insufficiency. Graefes Arch Clin Exp Ophthalmol 1996; 234 Suppl 1: S122-125
  • 47 Eberwein P, Bohringer D, Schwartzkopff J et al. Allogenic limbo-keratoplasty with conjunctivoplasty, mitomycin C, and amniotic membrane for bilateral limbal stem cell deficiency. Ophthalmology 2012; 119: 930-937
  • 48 Jiang TS, Cai L, Ji WY et al. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol Vis 2010; 16: 1304-1316
  • 49 Blazejewska EA, Schlotzer-Schrehardt U, Zenkel M et al. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem cells (Dayton, Ohio) 2009; 27: 642-652
  • 50 Meyer-Blazejewska EA, Call MK, Yamanaka O et al. From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem cells (Dayton, Ohio) 2011; 29: 57-66
  • 51 Satake Y, Higa K, Tsubota K et al. Long-term outcome of cultivated oral mucosal epithelial sheet transplantation in treatment of total limbal stem cell deficiency. Ophthalmology 2011; 118: 1524-1530
  • 52 Ma DH, Kuo MT, Tsai YJ et al. Transplantation of cultivated oral mucosal epithelial cells for severe corneal burn. Eye (Lond) 2009; 23: 1442-1450