Abstract
A mixture of phenylmercuric acetate and trifluoromethanesulfonic
acid or silica gel supported phenylmercuric trifluoromethanesulfonate
(silaphenyl mercuric triflate) efficiently catalyzed the formation
of pyrroles from homopropargyl azide derivatives. The reactions
proceed using 20 mol% of the heterogeneous catalyst with
yields of isolated pyrroles ranging from 74% to 99%.
Key words
cyclization - heterocycles - heterogeneous
catalysis - azides - alkynes
References and Notes
<A NAME="RU05611ST-1A">1a</A>
Jones A.
Pyrroles
Jones RA.
Wiley;
New York:
1990.
p.105
<A NAME="RU05611ST-1B">1b</A>
Sundberg RJ.
Comprehensive Heterocyclic Chemistry II
Vol.
2:
Katritzky AR.
Rees CW.
Scriven EFV.
Elsevier;
Oxford:
1996.
p.119
<A NAME="RU05611ST-1C">1c</A>
Eicher T.
Hauptmann S.
Speicher A.
The
Chemistry of Heterocycles
2nd ed.:
Wiley-VCH;
Weinheim:
2003.
p.97
<A NAME="RU05611ST-1D">1d</A>
Fan H.
Peng J.
Hamann MT.
Hu J.-F.
Chem. Rev.
2008,
108:
264
<A NAME="RU05611ST-2A">2a</A>
Patil NT.
Yamamoto Y.
Chem.
Rev.
2008,
108:
3395
<A NAME="RU05611ST-2B">2b</A>
Patil NT.
Yamamoto Y.
ARKIVOC
2007,
(x):
121
<A NAME="RU05611ST-3A">3a</A>
Knorr L.
Ber. Dtsch. Chem. Ges.
1884,
17:
1635
<A NAME="RU05611ST-3B">3b</A>
Paal C.
Ber.
Dtsch. Chem. Ges.
1884,
17:
2756
<A NAME="RU05611ST-3C">3c</A>
Amarnath V.
Anthony DC.
Amarnath K.
Valentine WM.
J. Org. Chem.
1991,
56:
6924
<A NAME="RU05611ST-3D">3d</A>
Pridmore SJ.
Slatford PA.
Taylor JE.
Whittlesey MK.
Williams
JMJ.
Tetrahedron
2009,
65:
8981
<A NAME="RU05611ST-3E">3e</A>
Azizi N.
Khajeh-Amiri A.
Ghafuri H.
Bolourtchian M.
Saidi MR.
Synlett
2009,
2245
<A NAME="RU05611ST-3F">3f</A>
Rivera S.
Bandyopadhyay D.
Banik BK.
Tetrahedron
Lett.
2009,
50:
5445
<A NAME="RU05611ST-3G">3g</A>
Chen J.
Wu H.
Zheng Z.
Jin C.
Zhang X.
Su W.
Tetrahedron Lett.
2006,
47:
5383
<A NAME="RU05611ST-4">4</A>
Hantzch A.
Ber.
Dtsch. Chem. Ges.
1890,
23:
1474
<A NAME="RU05611ST-5A">5a</A>
Trost BM.
Doherty GA.
J. Am. Chem. Soc.
2000,
122:
3801
<A NAME="RU05611ST-5B">5b</A>
Muchowski JM.
Adv. Med. Chem.
1992,
1:
109
<A NAME="RU05611ST-5C">5c</A>
Xia M.
Huang G.
J. Org. Chem.
2010,
75:
7842
<A NAME="RU05611ST-6">6</A>
Gorin DJ.
Davis NR.
Toste FD.
J.
Am. Chem. Soc.
2005,
127:
11260
<A NAME="RU05611ST-7A">7a</A>
Reddy VP.
Kumar AV.
Rao KR.
Tetrahedron Lett.
2011,
52:
777
<A NAME="RU05611ST-7B">7b</A>
Sharma R.
Chouhan M.
Sood D.
Nair VA.
Appl. Organomet. Chem.
2011,
25:
305
<A NAME="RU05611ST-7C">7c</A>
Rakshit S.
Patureau FW.
Glorius F.
J.
Am. Chem. Soc.
2010,
132:
9585
<A NAME="RU05611ST-7D">7d</A>
Ribeiro Laia FM.
Cardoso AL.
Beja AM.
Silva MR.
Pinho e Melo TMVD.
Tetrahedron
2010,
66:
8815
<A NAME="RU05611ST-7E">7e</A>
Queiroz M.-JRP.
Begouin A.
Pereira G.
Ferreira PMT.
Tetrahedron
2008,
64:
10714
<A NAME="RU05611ST-7F">7f</A>
Oda M.
Fukuchi Y.
Ito S.
Thanh NC.
Kuroda S.
Tetrahedron
Lett.
2007,
48:
9159
<A NAME="RU05611ST-7G">7g</A>
Martin R.
Rivero MR.
Buchwald SL.
Angew. Chem. Int. Ed.
2006,
45:
7079
<A NAME="RU05611ST-7H">7h</A>
Harrison TJ.
Kozak JA.
Corbella-Pané M.
Dake GR.
J.
Org. Chem.
2006,
71:
4525
<A NAME="RU05611ST-7I">7i</A>
Nishino F.
Miki K.
Kato Y.
Ohe K.
Uemura S.
Org. Lett.
2003,
5:
2615
<A NAME="RU05611ST-7J">7j</A>
Ranu BC.
Dey SS.
Tetrahedron
Lett.
2003,
44:
2865
<A NAME="RU05611ST-7K">7k</A>
Utimoto K.
Miwa H.
Nozaki H.
Tetrahedron Lett.
1981,
22:
4277
<A NAME="RU05611ST-8">8</A>
Hiroya K.
Matsumoto S.
Ashikawa M.
Ogiwara K.
Sakamoto T.
Org.
Lett.
2006,
8:
5349
<A NAME="RU05611ST-9">9</A>
Wyrūbek P.
Sniady A.
Bewick N.
Li Y.
Mikus A.
Wheeler KA.
Dembinski R.
Tetrahedron
2009,
65:
1268
<A NAME="RU05611ST-10">10</A>
Nishizawa M.
Skwarczynski M.
Imagawa H.
Sugihara T.
Chem. Lett.
2002,
12
<A NAME="RU05611ST-11">11</A>
Nishizawa M.
Imagawa H.
Yamamoto H.
Org.
Biomol. Chem.
2010,
8:
511
<A NAME="RU05611ST-12">12</A>
Yamamoto H.
Sasaki I.
Namba K.
Imagawa H.
Nishizawa M.
Org. Lett.
2007,
9:
1399
<A NAME="RU05611ST-13">13</A>
When the cyclization reaction of 1 with Hg(OTf)2 was quenched
using Et3N and NaCl at -20 ˚C,
the formation of pyrrolic mercury chloride corresponds to 7 was confirmed by ¹H
NMR spectroscopy. However, pyrrolic mercury chloride was unstable
under acidic conditions. During column chromatography on silica
gel pyrrolic mercury chloride decomposed into 2.
<A NAME="RU05611ST-14">14</A>
Yamamoto H.
Sasaki I.
Hirai Y.
Namba K.
Imagawa H.
Nishizawa M.
Angew. Chem. Int. Ed.
2009,
48:
1244
<A NAME="RU05611ST-15A">15a</A>
Rahmatpour A.
Aalaie J.
Heteroat.
Chem.
2011,
22:
85
<A NAME="RU05611ST-15B">15b</A>
Veisi H.
Tetrahedron
Lett.
2010,
51:
2109
<A NAME="RU05611ST-15C">15c</A>
Kumar MA.
Krishna AB.
Babu BH.
Reddy CB.
Reddy CS.
Synth. Commun.
2008,
38:
3456
<A NAME="RU05611ST-15D">15d</A>
Nad S.
Roler S.
Haag R.
Breinbauer R.
Org. Lett.
2006,
8:
403
<A NAME="RU05611ST-15E">15e</A>
Curini M.
Montanari F.
Rosati O.
Lioy E.
Margarita R.
Tetrahedron
Lett.
2003,
44:
3923
<A NAME="RU05611ST-16">16</A>
Preparation of
Silaphenylmercuric Triflate (10) and a Typical Experimental Procedure
for a Silaphenyl-mercuric Triflate Catalyzed Cyclization
To
a suspension of dried silaphenylmercuric acetate 9 (0.2 mmol/g,
500 mg, 0.1 mmol) in MeNO2 (5 mL) was added TfOH (17.4 µL,
0.2 mmol), and the mixture was stirred for 10 min at r.t. The filtered
residue was washed with MeNO2 (10 mL) and dried to give
silaphenylmercuric triflate 10. Next, MeNO2 (4
mL) and prepared 10 were added to a dried two-neck
flask. To the stirred suspension of 10 was
added a solution of 1 (86 mg, 0.5 mmol)
in MeNO2 (1 mL) at r.t. under argon. The mixture was
stirred at r.t. for 5 min, and the catalyst was then removed by
filtration and washed with MeNO2 (10 mL). The combined
filtrates were concentrated under reduced pressure. Purification
by column chromatog-raphy on silica gel using hexane and EtOAc (10:1)
gave pyrrole 2 (70 mg, 97%).
<A NAME="RU05611ST-17">17</A>
In all cases (Table
[³]
), recovery of 10 was between 99.29% and 99.89%.