ABSTRACT
The role of dysfunction of the gastrointestinal tract in the pathogenesis of multiple
organ failure (MOF) complicating the course of critically ill patients has been suspected
for more than 40 years. However, several hypotheses have been proposed and sometimes
refuted to establish a link. This review summarizes the current knowledge on gastrointestinal
physiology and recapitulates existing evidence on the link between gastrointestinal
dysfunction and MOF. The gastrointestinal tract has various functions apart from digestion.
It produces hormones with local and systemic effects, plays a major role in immunological
function, and serves as a barrier against antigens within its lumen. Gastrointestinal
dysfunction or gut failure is frequently encountered in critical care patients and
is associated with bacterial translocation, which can lead to the development of sepsis,
initiation of a cytokine-mediated systemic inflammatory response syndrome (SIRS),
multiple organ dysfunction syndrome (MODS), and death. The aim of this manuscript
is to define gut failure, to review physiopathological mechanisms and clinical implications,
and, finally, to suggest preventive measures.
KEYWORDS
Gut failure - bacterial translocation - sepsis - multiple organ failure - critical
care
REFERENCES
- 1
Gatt M, Reddy B S, MacFie J.
Review article: bacterial translocation in the critically ill—evidence and methods
of prevention.
Aliment Pharmacol Ther.
2007;
25
(7)
741-757
- 2
Reintam A, Parm P, Kitus R, Kern H, Starkopf J.
Gastrointestinal symptoms in intensive care patients.
Acta Anaesthesiol Scand.
2009;
53
(3)
318-324
- 3
Piton G, Manzon C, Cypriani B, Carbonnel F, Capellier G.
Acute intestinal failure in critically ill patients: is plasma citrulline the right
marker?.
Intensive Care Med.
2011;
37
(6)
911-917
- 4
Le Gall J R, Lemeshow S, Saulnier F.
A new Simplified Acute Physiology Score (SAPS II) based on a European/North American
multicenter study.
JAMA.
1993;
270
(24)
2957-2963
- 5
Vincent J L, Moreno R, Takala J et al..
The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure.
On behalf of the Working Group on Sepsis-Related Problems of the European Society
of Intensive Care Medicine.
Intensive Care Med.
1996;
22
(7)
707-710
- 6
Fagon J Y, Chastre J, Novara A, Medioni P, Gibert C.
Characterization of intensive care unit patients using a model based on the presence
or absence of organ dysfunctions and/or infection: the ODIN model.
Intensive Care Med.
1993;
19
(3)
137-144
- 7
Crenn P, Messing B, Cynober L.
Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction.
Clin Nutr.
2008;
27
(3)
328-339
- 8
Cummings J H, Antoine J M, Azpiroz F et al..
PASSCLAIM—gut health and immunity.
Eur J Nutr.
2004;
43
(Suppl 2)
II118-II173
- 9
Cheng H, Leblond C P.
Origin, differentiation and renewal of the four main epithelial cell types in the
mouse small intestine, V: Unitarian theory of the origin of the four epithelial cell
types.
Am J Anat.
1974;
141
(4)
537-561
- 10
Hall P A, Coates P J, Ansari B, Hopwood D.
Regulation of cell number in the mammalian gastrointestinal tract: the importance
of apoptosis.
J Cell Sci.
1994;
107
(Pt 12)
3569-3577
- 11
Grootjans J, Hodin C M, de Haan J J et al..
Level of activation of the unfolded protein response correlates with Paneth cell apoptosis
in human small intestine exposed to ischemia/reperfusion.
Gastroenterology.
2011;
140
(2)
529-539
e3
- 12
Utech M, Brüwer M, Nusrat A.
Tight junctions and cell-cell interactions.
Methods Mol Biol.
2006;
341
185-195
- 13
Coopersmith C M, Stromberg P E, Davis C G et al..
Sepsis from Pseudomonas aeruginosa pneumonia decreases intestinal proliferation and
induces gut epithelial cell cycle arrest.
Crit Care Med.
2003;
31
(6)
1630-1637
- 14
Husain K D, Stromberg P E, Woolsey C A et al..
Mechanisms of decreased intestinal epithelial proliferation and increased apoptosis
in murine acute lung injury.
Crit Care Med.
2005;
33
(10)
2350-2357
- 15
Potoka D A, Upperman J S, Zhang X R et al..
Peroxynitrite inhibits enterocyte proliferation and modulates Src kinase activity
in vitro.
Am J Physiol Gastrointest Liver Physiol.
2003;
285
(5)
G861-G869
- 16
Rafferty J F, Noguchi Y, Fischer J E, Hasselgren P O.
Sepsis in rats stimulates cellular proliferation in the mucosa of the small intestine.
Gastroenterology.
1994;
107
(1)
121-127
- 17
Clark J A, Coopersmith C M.
Intestinal crosstalk: a new paradigm for understanding the gut as the “motor” of critical
illness.
Shock.
2007;
28
(4)
384-393
- 18
Fukatsu K, Sakamoto S, Hara E et al..
Gut ischemia-reperfusion affects gut mucosal immunity: a possible mechanism for infectious
complications after severe surgical insults.
Crit Care Med.
2006;
34
(1)
182-187
- 19
Bäckhed F, Ley R E, Sonnenburg J L, Peterson D A, Gordon J I.
Host-bacterial mutualism in the human intestine.
Science.
2005;
307
(5717)
1915-1920
- 20
Alverdy J C, Laughlin R S, Wu L.
Influence of the critically ill state on host-pathogen interactions within the intestine:
gut-derived sepsis redefined.
Crit Care Med.
2003;
31
(2)
598-607
- 21
Lazazzera B A.
Quorum sensing and starvation: signals for entry into stationary phase.
Curr Opin Microbiol.
2000;
3
(2)
177-182
- 22
Kinney K S, Austin C E, Morton D S, Sonnenfeld G.
Norepinephrine as a growth stimulating factor in bacteria—mechanistic studies.
Life Sci.
2000;
67
(25)
3075-3085
- 23
Deane A, Chapman M J, Fraser R JL, Horowitz M.
Bench-to-bedside review: the gut as an endocrine organ in the critically ill.
Crit Care.
2010;
14
(5)
228-238
- 24
Nind G, Chen W H, Protheroe R et al..
Mechanisms of gastroesophageal reflux in critically ill mechanically ventilated patients.
Gastroenterology.
2005;
128
(3)
600-606
- 25
Nguyen N Q, Fraser R J, Chapman M et al..
Proximal gastric response to small intestinal nutrients is abnormal in mechanically
ventilated critically ill patients.
World J Gastroenterol.
2006;
12
(27)
4383-4388
- 26
Chapman M, Fraser R, Vozzo R et al..
Antro-pyloro-duodenal motor responses to gastric and duodenal nutrient in critically
ill patients.
Gut.
2005;
54
(10)
1384-1390
- 27
Deane A M, Fraser R J, Chapman M J.
Prokinetic drugs for feed intolerance in critical illness: current and potential therapies.
Crit Care Resusc.
2009;
11
(2)
132-143
- 28
Chapman M J, Fraser R J, Bryant L K et al..
Gastric emptying and the organization of antro-duodenal pressures in the critically
ill.
Neurogastroenterol Motil.
2008;
20
(1)
27-35
- 29
Johnston J D, Harvey C J, Menzies I S, Treacher D F.
Gastrointestinal permeability and absorptive capacity in sepsis.
Crit Care Med.
1996;
24
(7)
1144-1149
- 30
Chapman M J, Fraser R J, Matthews G et al..
Glucose absorption and gastric emptying in critical illness.
Crit Care.
2009;
13
(4)
R140
- 31
Wren A M, Seal L J, Cohen M A et al..
Ghrelin enhances appetite and increases food intake in humans.
J Clin Endocrinol Metab.
2001;
86
(12)
5992-5995
- 32
Parker B A, Doran S, Wishart J, Horowitz M, Chapman I M.
Effects of small intestinal and gastric glucose administration on the suppression
of plasma ghrelin concentrations in healthy older men and women.
Clin Endocrinol (Oxf).
2005;
62
(5)
539-546
- 33
Tack J, Depoortere I, Bisschops R, Verbeke K, Janssens J, Peeters T.
Influence of ghrelin on gastric emptying and meal-related symptoms in idiopathic gastroparesis.
Aliment Pharmacol Ther.
2005;
22
(9)
847-853
- 34
Murray C D, Martin N M, Patterson M et al..
Ghrelin enhances gastric emptying in diabetic gastroparesis: a double blind, placebo
controlled, crossover study.
Gut.
2005;
54
(12)
1693-1698
- 35
De Winter B Y, De Man J G, Seerden T C et al..
Effect of ghrelin and growth hormone-releasing peptide 6 on septic ileus in mice.
Neurogastroenterol Motil.
2004;
16
(4)
439-446
- 36
Nematy M, O'Flynn J E, Wandrag L et al..
Changes in appetite related gut hormones in intensive care unit patients: a pilot
cohort study.
Crit Care.
2006;
10
(1)
R10
- 37
Vantrappen G, Janssens J, Peeters T L, Bloom S R, Christofides N D, Hellemans J.
Motilin and the interdigestive migrating motor complex in man.
Dig Dis Sci.
1979;
24
(7)
497-500
- 38
Peeters T L, Muls E, Janssens J et al..
Effect of motilin on gastric emptying in patients with diabetic gastroparesis.
Gastroenterology.
1992;
102
(1)
97-101
- 39
Pilichiewicz A N, Chaikomin R, Brennan I M et al..
Load-dependent effects of duodenal glucose on glycemia, gastrointestinal hormones,
antropyloroduodenal motility, and energy intake in healthy men.
Am J Physiol Endocrinol Metab.
2007;
293
(3)
E743-E753
- 40
Fried M, Erlacher U, Schwizer W et al..
Role of cholecystokinin in the regulation of gastric emptying and pancreatic enzyme
secretion in humans. Studies with the cholecystokinin-receptor antagonist loxiglumide.
Gastroenterology.
1991;
101
(2)
503-511
- 41
Schwizer W, Borovicka J, Kunz P et al..
Role of cholecystokinin in the regulation of liquid gastric emptying and gastric motility
in humans: studies with the CCK antagonist loxiglumide.
Gut.
1997;
41
(4)
500-504
- 42
Hildebrand P, Beglinger C, Gyr K et al..
Effects of a cholecystokinin receptor antagonist on intestinal phase of pancreatic
and biliary responses in man.
J Clin Invest.
1990;
85
(3)
640-646
- 43
Nguyen N Q, Fraser R J, Chapman M J et al..
Feed intolerance in critical illness is associated with increased basal and nutrient-stimulated
plasma cholecystokinin concentrations.
Crit Care Med.
2007;
35
(1)
82-88
- 44
Adrian T E, Ferri G L, Bacarese-Hamilton A J, Fuessl H S, Polak J M, Bloom S R.
Human distribution and release of a putative new gut hormone, peptide YY.
Gastroenterology.
1985;
89
(5)
1070-1077
- 45
Savage A P, Adrian T E, Carolan G, Chatterjee V K, Bloom S R.
Effects of peptide YY (PYY) on mouth to caecum intestinal transit time and on the
rate of gastric emptying in healthy volunteers.
Gut.
1987;
28
(2)
166-170
- 46
Nguyen N Q, Fraser R J, Bryant L K et al..
The relationship between gastric emptying, plasma cholecystokinin, and peptide YY
in critically ill patients.
Crit Care.
2007;
11
(6)
R132
- 47
Meier J J, Nauck M A.
Glucagon-like peptide 1(GLP-1) in biology and pathology.
Diabetes Metab Res Rev.
2005;
21
(2)
91-117
- 48
Nauck M A, Heimesaat M M, Orskov C, Holst J J, Ebert R, Creutzfeldt W.
Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic
human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus.
J Clin Invest.
1993;
91
(1)
301-307
- 49
Nauck M A.
Is glucagon-like peptide 1 an incretin hormone?.
Diabetologia.
1999;
42
(3)
373-379
- 50
Meier J J, Gallwitz B, Schmidt W E, Nauck M A.
Glucagon-like peptide 1 as a regulator of food intake and body weight: therapeutic
perspectives.
Eur J Pharmacol.
2002;
440
(2-3)
269-279
- 51
Chaikomin R, Doran S, Jones K L et al..
Initially more rapid small intestinal glucose delivery increases plasma insulin, GIP,
and GLP-1 but does not improve overall glycemia in healthy subjects.
Am J Physiol Endocrinol Metab.
2005;
289
(3)
E504-E507
- 52
Meier J J, Weyhe D, Michaely M et al..
Intravenous glucagon-like peptide 1 normalizes blood glucose after major surgery in
patients with type 2 diabetes.
Crit Care Med.
2004;
32
(3)
848-851
- 53
Müssig K, Oncü A, Lindauer P et al..
Effects of intravenous glucagon-like peptide-1 on glucose control and hemodynamics
after coronary artery bypass surgery in patients with type 2 diabetes.
Am J Cardiol.
2008;
102
(5)
646-647
- 54
Deane A M, Chapman M J, Fraser R J, Burgstad C M, Besanko L K, Horowitz M.
The effect of exogenous glucagon-like peptide-1 on the glycaemic response to small
intestinal nutrient in the critically ill: a randomised double-blind placebo-controlled
cross over study.
Crit Care.
2009;
13
(3)
R67
- 55
Straub R H, Wiest R, Strauch U G, Härle P, Schölmerich J.
The role of the sympathetic nervous system in intestinal inflammation.
Gut.
2006;
55
(11)
1640-1649
- 56
Miksa M, Wu R, Zhou M, Wang P.
Sympathetic excitotoxicity in sepsis: pro-inflammatory priming of macrophages by norepinephrine.
Front Biosci.
2005;
10
2217-2229
- 57
Keita A V, Söderholm J D.
The intestinal barrier and its regulation by neuroimmune factors.
Neurogastroenterol Motil.
2010;
22
(7)
718-733
- 58
Santos J, Saunders P R, Hanssen N P et al..
Corticotropin-releasing hormone mimics stress-induced colonic epithelial pathophysiology
in the rat.
Am J Physiol.
1999;
277
(2 Pt 1)
G391-G399
- 59
Santos J, Yates D, Guilarte M, Vicario M, Alonso C, Perdue M H.
Stress neuropeptides evoke epithelial responses via mast cell activation in the rat
colon.
Psychoneuroendocrinology.
2008;
33
(9)
1248-1256
- 60
Smith F, Clark J E, Overman B L et al..
Early weaning stress impairs development of mucosal barrier function in the porcine
intestine.
Am J Physiol Gastrointest Liver Physiol.
2010;
298
(3)
G352-G363
- 61
Wallon C, Yang P C, Keita A V et al..
Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast
cells in normal human colonic biopsies in vitro.
Gut.
2008;
57
(1)
50-58
- 62
Moeser A J, Klok C V, Ryan K A et al..
Stress signaling pathways activated by weaning mediate intestinal dysfunction in the
pig.
Am J Physiol Gastrointest Liver Physiol.
2007;
292
(1)
G173-G181
- 63
Crowe S E, Perdue M H.
Anti-immunoglobin E-stimulated ion transport in human large and small intestine.
Gastroenterology.
1993;
105
(3)
764-772
- 64
Santos J, Saperas E, Nogueiras C et al..
Release of mast cell mediators into the jejunum by cold pain stress in humans.
Gastroenterology.
1998;
114
(4)
640-648
- 65
Berg R D, Garlington A W.
Translocation of certain indigenous bacteria from the gastrointestinal tract to the
mesenteric lymph nodes and other organs in a gnotobiotic mouse model.
Infect Immun.
1979;
23
(2)
403-411
- 66
Carrico C J, Meakins J L, Marshall J C, Fry D, Maier R V.
Multiple-organ-failure syndrome.
Arch Surg.
1986;
121
(2)
196-208
- 67
Dominguez J A, Coopersmith C M.
Can we protect the gut in critical illness? The role of growth factors and other novel
approaches.
Crit Care Clin.
2010;
26
(3)
549-565
x
- 68
Alverdy J C, Laughlin R S, Wu L.
Influence of the critically ill state on host-pathogen interactions within the intestine:
gut-derived sepsis redefined.
Crit Care Med.
2003;
31
(2)
598-607
- 69
Deitch E A.
Bacterial translocation or lymphatic drainage of toxic products from the gut: what
is important in human beings?.
Surgery.
2002;
131
(3)
241-244
- 70
Deitch E A, Xu D, Kaise V L.
Role of the gut in the development of injury- and shock induced SIRS and MODS: the
gut-lymph hypothesis, a review.
Front Biosci.
2006;
11
520-528
- 71
Deitch E A.
Role of the gut lymphatic system in multiple organ failure.
Curr Opin Crit Care.
2001;
7
(2)
92-98
- 72
Senthil M, Brown M, Xu D Z, Lu Q, Feketeova E, Deitch E A.
Gut-lymph hypothesis of systemic inflammatory response syndrome/multiple-organ dysfunction
syndrome: validating studies in a porcine model.
J Trauma.
2006;
60
(5)
958-965
discussion 965-967
- 73
Deitch E A, Forsythe R, Anjaria D et al..
The role of lymph factors in lung injury, bone marrow suppression, and endothelial
cell dysfunction in a primate model of trauma-hemorrhagic shock.
Shock.
2004;
22
(3)
221-228
- 74
Steinberg S M.
Bacterial translocation: what it is and what it is not.
Am J Surg.
2003;
186
(3)
301-305
- 75
Spahn T W, Kucharzik T.
Modulating the intestinal immune system: the role of lymphotoxin and GALT organs.
Gut.
2004;
53
(3)
456-465
- 76
Garside P, Millington O, Smith K M.
The anatomy of mucosal immune responses.
Ann N Y Acad Sci.
2004;
1029
9-15
- 77
Song F, Whitacre C C.
The role of the gut lymphoid tissue in induction of oral tolerance.
Curr Opin Investig Drugs.
2001;
2
(10)
1382-1386
- 78
O'Boyle C J, MacFie J, Mitchell C J, Johnstone D, Sagar P M, Sedman P C.
Microbiology of bacterial translocation in humans.
Gut.
1998;
42
(1)
29-35
- 79
MacFie J, Reddy B S, Gatt M, Jain P K, Sowdi R, Mitchell C J.
Bacterial translocation studied in 927 patients over 13 years.
Br J Surg.
2006;
93
(1)
87-93
- 80
Sedman P C, Macfie J, Sagar P et al..
The prevalence of gut translocation in humans.
Gastroenterology.
1994;
107
(3)
643-649
- 81
Reynolds J V, Murchan P, Leonard N, Clarke P, Keane F B, Tanner W A.
Gut barrier failure in experimental obstructive jaundice.
J Surg Res.
1996;
62
(1)
11-16
- 82
Hua T C, Moochhala S M.
Role of nitric oxide in hemorrhagic shock-induced bacterial translocation.
J Surg Res.
2000;
93
(2)
247-256
- 83
de Madaria E, Martínez J, Lozano B et al..
Detection and identification of bacterial DNA in serum from patients with acute pancreatitis.
Gut.
2005;
54
(9)
1293-1297
- 84
Küçükaydin M, Kocaoğlu C, Köksal F, Kontaş O.
Detection of intestinal bacterial translocation in subclinical ischemia-reperfusion
using the polymerase chain reaction technique.
J Pediatr Surg.
2000;
35
(1)
41-43
- 85
Galeev Y M, Lishmanov Y B, Grigorev E G, Popov M V, Aparcin K A, Salato O V.
Scintigraphic visualization of bacterial translocation in experimental strangulated
intestinal obstruction.
Eur J Nucl Med Mol Imaging.
2009;
36
(11)
1822-1828
- 86
Kabaroudis A, Papaziogas B, Koutelidakis I, Kyparissi-Kanellaki M, Kouzi-Koliakou K,
Papaziogas T.
Disruption of the small-intestine mucosal barrier after intestinal occlusion: a study
with light and electron microscopy.
J Invest Surg.
2003;
16
(1)
23-28
- 87
Antequera R, Bretaña A, Cirac A, Brito A, Romera M A, Zapata R.
Disruption of the intestinal barrier and bacterial translocation in an experimental
model of intestinal obstruction.
Acta Cient Venez.
2000;
51
(1)
18-26
- 88
Samel S, Keese M, Kleczka M et al..
Microscopy of bacterial translocation during small bowel obstruction and ischemia
in vivo—a new animal model.
BMC Surg.
2002;
2
6-13
- 89
Sagar P M, MacFie J, Sedman P, May J, Mancey-Jones B, Johnstone D.
Intestinal obstruction promotes gut translocation of bacteria.
Dis Colon Rectum.
1995;
38
(6)
640-644
- 90
Deitch E A, Sittig K, Li M, Berg R, Specian R D.
Obstructive jaundice promotes bacterial translocation from the gut.
Am J Surg.
1990;
159
(1)
79-84
- 91
Karsten T M, van Gulik T M, Spanjaard L et al..
Bacterial translocation from the biliary tract to blood and lymph in rats with obstructive
jaundice.
J Surg Res.
1998;
74
(2)
125-130
- 92
Ogata Y, Nishi M, Nakayama H, Kuwahara T, Ohnishi Y, Tashiro S.
Role of bile in intestinal barrier function and its inhibitory effect on bacterial
translocation in obstructive jaundice in rats.
J Surg Res.
2003;
115
(1)
18-23
- 93
Cakmakci M, Tirnaksiz B, Hayran M, Belek S, Gürbüz T, Sayek I.
Effects of obstructive jaundice and external biliary diversion on bacterial translocation
in rats.
Eur J Surg.
1996;
162
(7)
567-571
- 94
Ding J W, Andersson R, Soltesz V, Willén R, Bengmark S.
Obstructive jaundice impairs reticuloendothelial function and promotes bacterial translocation
in the rat.
J Surg Res.
1994;
57
(2)
238-245
- 95
Reynolds J V, Murchan P, Redmond H P et al..
Failure of macrophage activation in experimental obstructive jaundice: association
with bacterial translocation.
Br J Surg.
1995;
82
(4)
534-538
- 96
Sheen-Chen S M, Chau P, Harris H W.
Obstructive jaundice alters Kupffer cell function independent of bacterial translocation.
J Surg Res.
1998;
80
(2)
205-209
- 97
Parks R W, Stuart Cameron C H, Gannon C D, Pope C, Diamond T, Rowlands B J.
Changes in gastrointestinal morphology associated with obstructive jaundice.
J Pathol.
2000;
192
(4)
526-532
- 98
Reynolds J V, Murchan P, Leonard N, Clarke P, Keane F B, Tanner W A.
Gut barrier failure in experimental obstructive jaundice.
J Surg Res.
1996;
62
(1)
11-16
- 99
Wells C L, Jechorek R P, Erlandsen S L.
Inhibitory effect of bile on bacterial invasion of enterocytes: possible mechanism
for increased translocation associated with obstructive jaundice.
Crit Care Med.
1995;
23
(2)
301-307
- 100
Parks R W, Clements W D, Smye M G, Pope C, Rowlands B J, Diamond T.
Intestinal barrier dysfunction in clinical and experimental obstructive jaundice and
its reversal by internal biliary drainage.
Br J Surg.
1996;
83
(10)
1345-1349
- 101
Kuzu M A, Kale I T, Cöl C, Tekeli A, Tanik A, Köksoy C.
Obstructive jaundice promotes bacterial translocation in humans.
Hepatogastroenterology.
1999;
46
(28)
2159-2164
- 102
Al-Bahrani A Z, Darwish A, Hamza N et al..
Gut barrier dysfunction in critically ill surgical patients with abdominal compartment
syndrome.
Pancreas.
2010;
39
(7)
1064-1069
- 103
Byers R J, Eddleston J M, Pearson R C, Bigley G, McMahon R F.
Dopexamine reduces the incidence of acute inflammation in the gut mucosa after abdominal
surgery in high-risk patients.
Crit Care Med.
1999;
27
(9)
1787-1793
- 104
Lisbon A.
Dopexamine, dobutamine, and dopamine increase splanchnic blood flow: what is the evidence?.
Chest.
2003;
123
(5, Suppl)
460S-463S
- 105
MacFie J, O'Boyle C, Mitchell C J, Buckley P M, Johnstone D, Sudworth P.
Gut origin of sepsis: a prospective study investigating associations between bacterial
translocation, gastric microflora, and septic morbidity.
Gut.
1999;
45
(2)
223-228
- 106
Cheung N W, Napier B, Zaccaria C, Fletcher J P.
Hyperglycemia is associated with adverse outcomes in patients receiving total parenteral
nutrition.
Diabetes Care.
2005;
28
(10)
2367-2371
- 107
Jeejeebhoy K N.
Total parenteral nutrition: potion or poison?.
Am J Clin Nutr.
2001;
74
(2)
160-163
- 108
Miura S, Tanaka S, Yoshioka M et al..
Changes in intestinal absorption of nutrients and brush border glycoproteins after
total parenteral nutrition in rats.
Gut.
1992;
33
(4)
484-489
- 109
Guedon C, Schmitz J, Lerebours E et al..
Decreased brush border hydrolase activities without gross morphologic changes in human
intestinal mucosa after prolonged total parenteral nutrition of adults.
Gastroenterology.
1986;
90
(2)
373-378
- 110
Rossi T M, Lee P C, Young C, Tjota A.
Small intestinal mucosa changes, including epithelial cell proliferative activity,
of children receiving total parenteral nutrition (TPN).
Dig Dis Sci.
1993;
38
(9)
1608-1613
- 111
Pironi L, Paganelli G M, Miglioli M et al..
Morphologic and cytoproliferative patterns of duodenal mucosa in two patients after
long-term total parenteral nutrition: changes with oral refeeding and relation to
intestinal resection.
JPEN J Parenter Enteral Nutr.
1994;
18
(4)
351-354
- 112
Sedman P C, MacFie J, Palmer M D, Mitchell C J, Sagar P M.
Preoperative total parenteral nutrition is not associated with mucosal atrophy or
bacterial translocation in humans.
Br J Surg.
1995;
82
(12)
1663-1667
- 113
Groos S, Hunefeld G, Luciano L.
Parenteral versus enteral nutrition: morphological changes in human adult intestinal
mucosa.
J Submicrosc Cytol Pathol.
1996;
28
(1)
61-74
- 114
Moore F A, Moore E E, Jones T N, McCroskey B L, Peterson V M.
TEN versus TPN following major abdominal trauma—reduced septic morbidity.
J Trauma.
1989;
29
(7)
916-922
discussion 922-923
- 115
Kudsk K A, Croce M A, Fabian T C et al..
Enteral versus parenteral feeding: effects on septic morbidity after blunt and penetrating
abdominal trauma.
Ann Surg.
1992;
215
(5)
503-511
discussion 511-513
- 116
Lipman T O.
Bacterial translocation and enteral nutrition in humans: an outsider looks in.
JPEN J Parenter Enteral Nutr.
1995;
19
(2)
156-165
- 117
Alpers D H.
Enteral feeding and gut atrophy.
Curr Opin Clin Nutr Metab Care.
2002;
5
(6)
679-683
- 118
Thibault R, Pichard C.
Parenteral nutrition in critical illness: can it safely improve outcomes?.
Crit Care Clin.
2010;
26
(3)
467-480
viii
- 119
Al-Omran M, Albalawi Z H, Tashkandi M F, Al-Ansary L A.
Enteral versus parenteral nutrition for acute pancreatitis.
Cochrane Database Syst Rev.
2010;
(1)
CD002837
- 120
van Saene H K, Petros A J, Ramsay G, Baxby D.
All great truths are iconoclastic: selective decontamination of the digestive tract
moves from heresy to level 1 truth.
Intensive Care Med.
2003;
29
(5)
677-690
- 121
Silvestri L, van Saene H K, Zandstra D F, Marshall J C, Gregori D, Gullo A.
Impact of selective decontamination of the digestive tract on multiple organ dysfunction
syndrome: systematic review of randomized controlled trials.
Crit Care Med.
2010;
38
(5)
1370-1376
- 122
de Smet A M, Kluytmans J A, Cooper B S et al..
Decontamination of the digestive tract and oropharynx in ICU patients.
N Engl J Med.
2009;
360
(1)
20-31
- 123
Chan E Y, Ruest A, Meade M O, Cook D J.
Oral decontamination for prevention of pneumonia in mechanically ventilated adults:
systematic review and meta-analysis.
BMJ.
2007;
334
(7599)
889-900
- 124
Fedorak R N.
Probiotics in the management of ulcerative colitis.
Gastroenterol Hepatol (N Y).
2010;
6
(11)
688-690
- 125
O'Flaherty S, Saulnier D M, Pot B, Versalovic J.
How can probiotics and prebiotics impact mucosal immunity?.
Gut Microbes.
2010;
1
(5)
293-300
- 126
Alberda C, Gramlich L, Meddings J et al..
Effects of probiotic therapy in critically ill patients: a randomized, double-blind,
placebo-controlled trial.
Am J Clin Nutr.
2007;
85
(3)
816-823
- 127
McNabb B, Isakow W.
Probiotics for the prevention of nosocomial pneumonia: current evidence and opinions.
Curr Opin Pulm Med.
2008;
14
(3)
168-175
- 128
Jacobi C A, Schulz C, Malfertheiner P.
Treating critically ill patients with probiotics: Beneficial or dangerous?.
Gut Pathog.
2011;
3
(1)
2-7
- 129
Besselink M G, van Santvoort H C, Buskens E Dutch Acute Pancreatitis Study Group et
al.
Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind,
placebo-controlled trial.
Lancet.
2008;
371
(9613)
651-659
- 130
Duggan C, Gannon J, Walker W A.
Protective nutrients and functional foods for the gastrointestinal tract.
Am J Clin Nutr.
2002;
75
(5)
789-808
- 131
Lardy H, Mouillé B, Thomas M et al..
Enterocyte metabolism during early adaptation after extensive intestinal resection
in a rat model.
Surgery.
2004;
135
(6)
649-656
- 132
Hayashi Y, Sawa Y, Fukuyama N, Nakazawa H, Matsuda H.
Preoperative glutamine administration induces heat-shock protein 70 expression and
attenuates cardiopulmonary bypass-induced inflammatory response by regulating nitric
oxide synthase activity.
Circulation.
2002;
106
(20)
2601-2607
- 133
Wischmeyer P E, Kahana M, Wolfson R, Ren H, Musch M M, Chang E B.
Glutamine reduces cytokine release, organ damage, and mortality in a rat model of
endotoxemia.
Shock.
2001;
16
(5)
398-402
- 134
Tremel H, Kienle B, Weilemann L S, Stehle P, Fürst P.
Glutamine dipeptide-supplemented parenteral nutrition maintains intestinal function
in the critically ill.
Gastroenterology.
1994;
107
(6)
1595-1601
- 135
Klimberg V S, Souba W W, Dolson D J et al..
Prophylactic glutamine protects the intestinal mucosa from radiation injury.
Cancer.
1990;
66
(1)
62-68
- 136
Alverdy J C.
Effects of glutamine-supplemented diets on immunology of the gut.
JPEN J Parenter Enteral Nutr.
1990;
14
(4, Suppl)
109S-113S
- 137
Ziegler T R, Young L S, Benfell K et al..
Clinical and metabolic efficacy of glutamine-supplemented parenteral nutrition after
bone marrow transplantation. A randomized, double-blind, controlled study.
Ann Intern Med.
1992;
116
(10)
821-828
- 138
Wischmeyer P E.
Glutamine: mode of action in critical illness.
Crit Care Med.
2007;
35
(9, Suppl)
S541-S544
- 139
Novak F, Heyland D K, Avenell A, Drover J W, Su X.
Glutamine supplementation in serious illness: a systematic review of the evidence.
Crit Care Med.
2002;
30
(9)
2022-2029
- 140
Gianotti L, Alexander J W, Gennari R, Pyles T, Babcock G F.
Oral glutamine decreases bacterial translocation and improves survival in experimental
gut-origin sepsis.
JPEN J Parenter Enteral Nutr.
1995;
19
(1)
69-74
- 141
Mizock B A.
Immunonutrition and critical illness: an update.
Nutrition.
2010;
26
(7-8)
701-707
- 142
Berthe M C, Darquy S, Breuillard C et al..
High plasma citrulline and arginine levels ensured by sustained-release citrulline
supplementation in rats.
Nutrition.
2011 April 8. [Epub ahead of print]
- 143
Bertolini G, Iapichino G, Radrizzani D et al..
Early enteral immunonutrition in patients with severe sepsis: results of an interim
analysis of a randomized multicentre clinical trial.
Intensive Care Med.
2003;
29
(5)
834-840
- 144
Marik P E, Zaloga G P.
Immunonutrition in critically ill patients: a systematic review and analysis of the
literature.
Intensive Care Med.
2008;
34
(11)
1980-1990
- 145
Gopal S, Jayakumar D, Nelson P N.
Meta-analysis on the effect of dopexamine on in-hospital mortality.
Anaesthesia.
2009;
64
(6)
589-594
Jean-Charles PreiserM.D. Ph.D.
Department of Intensive Care Medicine, Erasme University Hospital, Université libre
de Bruxelles
808 route de Lennik, B-1070 Brussels, Belgium
eMail: Jean-Charles.Preiser@erasme.ulb.ac.be