ABSTRACT
Vasculitides that affect the lung represent a diverse group of diseases with various
systemic clinical manifestations, and include microscopic polyangiitis (MPA), granulomatosis
with polyangiitis (GPA, formerly Wegener granulomatosis), Churg-Strauss syndrome (CSS),
and anti-glomerular basement membrane (anti-GBM) disease (Goodpasture syndrome). The
etiologies of these diseases remain largely unknown. Although the pathogenic mechanisms
of each differ, these diseases overlap by the presence of anti-neutrophil cytoplasmic
autoantibodies in the vast majority of patients with MPA and GPA, and a substantial
minority of patients with CSS and anti-GBM disease. This article reviews the current
understanding of the pathogenesis of these four disease entities.
KEYWORDS
Vasculitis - microscopic polyangiitis - Wegener granulomatosis - Churg Strauss syndrome
- Goodpasture syndrome - anti-GBM - pathogenesis
REFERENCES
- 1
Falk R J, Jennette J C.
ANCA disease: where is this field heading?.
J Am Soc Nephrol.
2010;
21
(5)
745-752
- 2
Sinico R A, Di Toma L, Maggiore U et al..
Prevalence and clinical significance of antineutrophil cytoplasmic antibodies in Churg-Strauss
syndrome.
Arthritis Rheum.
2005;
52
(9)
2926-2935
- 3
Sablé-Fourtassou R, Cohen P, Mahr A French Vasculitis Study Group et al.
Antineutrophil cytoplasmic antibodies and the Churg-Strauss syndrome.
Ann Intern Med.
2005;
143
(9)
632-638
- 4
Hellmark T, Niles J L, Collins A B, McCluskey R T, Brunmark C.
Comparison of anti-GBM antibodies in sera with or without ANCA.
J Am Soc Nephrol.
1997;
8
(3)
376-385
- 5
Jennette J C, Falk R J.
Pathogenic potential of anti-neutrophil cytoplasmic autoantibodies.
Adv Exp Med Biol.
1993;
336
7-15
- 6
Kallenberg C G, Brouwer E, Weening J J, Tervaert J W.
Anti-neutrophil cytoplasmic antibodies: current diagnostic and pathophysiological
potential.
Kidney Int.
1994;
46
(1)
1-15
- 7
Harris A A, Falk R J, Jennette J C.
Crescentic glomerulonephritis with a paucity of glomerular immunoglobulin localization.
Am J Kidney Dis.
1998;
32
(1)
179-184
- 8
Jennette J C, Falk R J.
Pathogenic potential of anti-neutrophil cytoplasmic autoantibodies.
Adv Exp Med Biol.
1993;
336
7-15
- 9
Keogan M T, Esnault V L, Green A J, Lockwood C M, Brown D L.
Activation of normal neutrophils by anti-neutrophil cytoplasm antibodies.
Clin Exp Immunol.
1992;
90
(2)
228-234
- 10
Ewert B H, Jennette J C, Falk R J.
Anti-myeloperoxidase antibodies stimulate neutrophils to damage human endothelial
cells.
Kidney Int.
1992;
41(2)
375-383
- 11
Braun M G, Csernok E, Gross W L, Müller-Hermelink H K.
Proteinase 3, the target antigen of anticytoplasmic antibodies circulating in Wegener's
granulomatosis: immunolocalization in normal and pathologic tissues.
Am J Pathol.
1991;
139
(4)
831-838
- 12
Savage C O, Pottinger B E, Gaskin G, Pusey C D, Pearson J D.
Autoantibodies developing to myeloperoxidase and proteinase 3 in systemic vasculitis
stimulate neutrophil cytotoxicity toward cultured endothelial cells.
Am J Pathol.
1992;
141
(2)
335-342
- 13
Porges A J, Redecha P B, Kimberly W T, Csernok E, Gross W L, Kimberly R P.
Anti-neutrophil cytoplasmic antibodies engage and activate human neutrophils via Fc
gamma RIIa.
J Immunol.
1994;
153
(3)
1271-1280
- 14
Charles L A, Caldas M L, Falk R J, Terrell R S, Jennette J C.
Antibodies against granule proteins activate neutrophils in vitro.
J Leukoc Biol.
1991;
50
(6)
539-546
- 15
Brouwer E, Huitema M G, Mulder A H et al..
Neutrophil activation in vitro and in vivo in Wegener's granulomatosis.
Kidney Int.
1994;
45
(4)
1120-1131
- 16
Yang J J, Pendergraft W F, Alcorta D A et al..
Circumvention of normal constraints on granule protein gene expression in peripheral
blood neutrophils and monocytes of patients with antineutrophil cytoplasmic autoantibody-associated
glomerulonephritis.
J Am Soc Nephrol.
2004;
15
(8)
2103-2114
- 17
Ciavatta D J, Yang J, Preston G A et al..
Epigenetic basis for aberrant upregulation of autoantigen genes in humans with ANCA
vasculitis.
J Clin Invest.
2010;
120
(9)
3209-3219
- 18
Taekema-Roelvink M E, Van Kooten C, Heemskerk E, Schroeijers W, Daha M R.
Proteinase 3 interacts with a 111-kD membrane molecule of human umbilical vein endothelial
cells.
J Am Soc Nephrol.
2000;
11
(4)
640-648
- 19
Kurosawa S, Esmon C T, Stearns-Kurosawa D J.
The soluble endothelial protein C receptor binds to activated neutrophils: involvement
of proteinase-3 and CD11b/CD18.
J Immunol.
2000;
165
(8)
4697-4703
- 20
Ballieux B E, Hiemstra P S, Klar-Mohamad N et al..
Detachment and cytolysis of human endothelial cells by proteinase 3.
Eur J Immunol.
1994;
24
(12)
3211-3215
- 21
Yang J J, Kettritz R, Falk R J, Jennette J C, Gaido M L.
Apoptosis of endothelial cells induced by the neutrophil serine proteases proteinase
3 and elastase.
Am J Pathol.
1996;
149
(5)
1617-1626
- 22
Taekema-Roelvink M E, van Kooten C, Janssens M C, Heemskerk E, Daha M R.
Effect of anti-neutrophil cytoplasmic antibodies on proteinase 3-induced apoptosis
of human endothelial cells.
Scand J Immunol.
1998;
48
(1)
37-43
- 23
Baldus S, Eiserich J P, Mani A et al..
Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins
as targets of tyrosine nitration.
J Clin Invest.
2001;
108
(12)
1759-1770
- 24
Brennan M L, Wu W, Fu X et al..
A tale of two controversies: defining both the role of peroxidases in nitrotyrosine
formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice,
and the nature of peroxidase-generated reactive nitrogen species.
J Biol Chem.
2002;
277
(20)
17415-17427
- 25
Woods A A, Linton S M, Davies M J.
Detection of HOCl-mediated protein oxidation products in the extracellular matrix
of human atherosclerotic plaques.
Biochem J.
2003;
370
(Pt 2)
729-735
- 26
Lu X, Garfield A, Rainger G E, Savage C O, Nash G B.
Mediation of endothelial cell damage by serine proteases, but not superoxide, released
from antineutrophil cytoplasmic antibody-stimulated neutrophils.
Arthritis Rheum.
2006;
54
(5)
1619-1628
- 27
Kettritz R, Jennette J C, Falk R J.
Crosslinking of ANCA-antigens stimulates superoxide release by human neutrophils.
J Am Soc Nephrol.
1997;
8
(3)
386-394
- 28
Kimberly R P.
Fcgamma receptors and neutrophil activation.
Clin Exp Immunol.
2000;
120
(suppl 1)
18-19
- 29
Kocher M, Edberg J C, Fleit H B, Kimberly R P.
Antineutrophil cytoplasmic antibodies preferentially engage Fc gammaRIIIb on human
neutrophils.
J Immunol.
1998;
161
(12)
6909-6914
- 30
Kocher M, Edberg J C, Fleit H B, Kimberly R P.
Antineutrophil cytoplasmic antibodies preferentially engage Fc gammaRIIIb on human
neutrophils.
J Immunol.
1998;
161
(12)
6909-6914
- 31
Yang J J, Alcorta D A, Preston G A et al..
Genes activated by ANCA IgG and ANCA F(ab')2 fragments [abstract].
J Am Soc Nephrol.
2000;
11
485A
- 32
Bolton W K, Innes Jr D J, Sturgill B C, Kaiser D L.
T-cells and macrophages in rapidly progressive glomerulonephritis: clinicopathologic
correlations.
Kidney Int.
1987;
32
(6)
869-876
- 33
Csernok E, Trabandt A, Müller A et al..
Cytokine profiles in Wegener's granulomatosis: predominance of type 1 (Th1) in the
granulomatous inflammation.
Arthritis Rheum.
1999;
42
(4)
742-750
- 34
Balding C E, Howie A J, Drake-Lee A B, Savage C O.
Th2 dominance in nasal mucosa in patients with Wegener's granulomatosis.
Clin Exp Immunol.
2001;
125
(2)
332-339
- 35
Komocsi A, Lamprecht P, Csernok E et al..
Peripheral blood and granuloma CD4( + )CD28(-) T cells are a major source of interferon-gamma
and tumor necrosis factor-alpha in Wegener's granulomatosis.
Am J Pathol.
2002;
160
(5)
1717-1724
- 36
Schmitt W H, Heesen C, Csernok E, Rautmann A, Gross W L.
Elevated serum levels of soluble interleukin-2 receptor in patients with Wegener's
granulomatosis: association with disease activity.
Arthritis Rheum.
1992;
35
(9)
1088-1096
- 37
Wang G, Hansen H, Tatsis E, Csernok E, Lemke H, Gross W L.
High plasma levels of the soluble form of CD30 activation molecule reflect disease
activity in patients with Wegener's granulomatosis.
Am J Med.
1997;
102
(6)
517-523
- 38
Berden A E, Kallenberg C G, Savage C O et al..
Cellular immunity in Wegener's granulomatosis: characterizing T lymphocytes.
Arthritis Rheum.
2009;
60
(6)
1578-1587
- 39
Abdulahad W H, Stegeman C A, Limburg P C, Kallenberg C G.
Skewed distribution of Th17 lymphocytes in patients with Wegener's granulomatosis
in remission.
Arthritis Rheum.
2008;
58
(7)
2196-2205
- 40
Abdulahad W H, Stegeman C A, van der Geld Y M, Doornbos-van der Meer B, Limburg P C,
Kallenberg C G.
Functional defect of circulating regulatory CD4 + T cells in patients with Wegener's
granulomatosis in remission.
Arthritis Rheum.
2007;
56
(6)
2080-2091
- 41
Nogueira E, Hamour S, Sawant D et al..
Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells are elevated in patients
with ANCA-associated vasculitis.
Nephrol Dial Transplant.
2010;
25
(7)
2209-2217
- 42
Little M A, Smyth C L, Yadav R et al..
Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte-microvascular
interactions in vivo.
Blood.
2005;
106
(6)
2050-2058
- 43
Xiao H, Heeringa P, Hu P et al..
Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis
and vasculitis in mice.
J Clin Invest.
2002;
110
(7)
955-963
- 44
Huugen D, Xiao H, van Esch A et al..
Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacterial
lipopolysaccharide: role of tumor necrosis factor-alpha.
Am J Pathol.
2005;
167
(1)
47-58
- 45
Xiao H, Heeringa P, Liu Z et al..
The role of neutrophils in the induction of glomerulonephritis by anti-myeloperoxidase
antibodies.
Am J Pathol.
2005;
167
(1)
39-45
- 46
Jennette J C, Xiao H, Falk R J.
Pathogenesis of vascular inflammation by anti-neutrophil cytoplasmic antibodies.
J Am Soc Nephrol.
2006;
17
(5)
1235-1242
- 47
Xiao H, Schreiber A, Heeringa P, Falk R J, Jennette J C.
Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil
cytoplasmic autoantibodies.
Am J Pathol.
2007;
170
(1)
52-64
- 48
Huugen D, van Esch A, Xiao H et al..
Inhibition of complement factor C5 protects against anti-myeloperoxidase antibody-mediated
glomerulonephritis in mice.
Kidney Int.
2007;
71
(7)
646-654
- 49
Schreiber A, Xiao H, Jennette J C, Schneider W, Luft F C, Kettritz R.
C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis.
J Am Soc Nephrol.
2009;
20
(2)
289-298
- 50
Primo V C, Marusic S, Franklin C C et al..
Anti-PR3 immune responses induce segmental and necrotizing glomerulonephritis.
Clin Exp Immunol.
2010;
159
(3)
327-337
- 51
Spencer S J, Burns A, Gaskin G, Pusey C D, Rees A J.
HLA class II specificities in vasculitis with antibodies to neutrophil cytoplasmic
antigens.
Kidney Int.
1992;
41
(4)
1059-1063
- 52
Hogan S L, Satterly K K, Dooley M A, Nachman P H, Jennette J C, Falk R J. Glomerular
Disease Collaborative Network .
Silica exposure in anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis
and lupus nephritis.
J Am Soc Nephrol.
2001;
12
(1)
134-142
- 53
Pendergraft III W F, Pressler B M, Jennette J C, Falk R J, Preston G A.
Autoantigen complementarity: a new theory implicating complementary proteins as initiators
of autoimmune disease.
J Mol Med.
2005;
83
(1)
12-25
- 54
Pendergraft III W F, Preston G A, Shah R R et al..
Autoimmunity is triggered by cPR-3(105-201), a protein complementary to human autoantigen
proteinase-3.
Nat Med.
2004;
10
(1)
72-79
- 55
Kain R, Exner M, Brandes R et al..
Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis.
Nat Med.
2008;
14
(10)
1088-1096
- 56
Kessenbrock K, Krumbholz M, Schönermarck U et al..
Netting neutrophils in autoimmune small-vessel vasculitis.
Nat Med.
2009;
15
(6)
623-625
- 57
Pagnoux C, Guillevin L.
Churg-Strauss syndrome: evidence for disease subtypes?.
Curr Opin Rheumatol.
2010;
22
(1)
21-28
- 58
Committee on Safety of Medicines/Medicines Control Agency .
Leukotriene receptor antagonists update on adverse reaction profiles.
Curr Probl Pharmacovigilance.
1999;
25
14
- 59
DuMouchel W, Smith E T, Beasley R et al..
Association of asthma therapy and Churg-Strauss syndrome: an analysis of postmarketing
surveillance data.
Clin Ther.
2004;
26
(7)
1092-1104
- 60
Hauser T, Mahr A, Metzler C et al..
The leucotriene receptor antagonist montelukast and the risk of Churg-Strauss syndrome:
a case-crossover study.
Thorax.
2008;
63
(8)
677-682
- 61
Harrold L R, Patterson M K, Andrade S E et al..
Asthma drug use and the development of Churg-Strauss syndrome (CSS).
Pharmacoepidemiol Drug Saf.
2007;
16
(6)
620-626
- 62
Bibby S, Healy B, Steele R, Kumareswaran K, Nelson H, Beasley R.
Association between leukotriene receptor antagonist therapy and Churg-Strauss syndrome:
an analysis of the FDA AERS database.
Thorax.
2010;
65
(2)
132-138
- 63
Hellmich B, Csernok E, Gross W L.
Proinflammatory cytokines and autoimmunity in Churg-Strauss syndrome.
Ann N Y Acad Sci.
2005;
1051
121-131
- 64
Schönermarck U, Csernok E, Trabandt A, Hansen H, Gross W L.
Circulating cytokines and soluble CD23, CD26 and CD30 in ANCA-associated vasculitides.
Clin Exp Rheumatol.
2000;
18
(4)
457-463
- 65
Clutterbuck E J, Hirst E M, Sanderson C J.
Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow
cultures: comparison and interaction with IL-1, IL-3, IL-6, and GMCSF.
Blood.
1989;
73
(6)
1504-1512
- 66
Yamaguchi Y, Hayashi Y, Sugama Y et al..
Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs
in vitro survival. IL-5 as an eosinophil chemotactic factor.
J Exp Med.
1988;
167
(5)
1737-1742
- 67
Yamaguchi Y, Suda T, Ohta S, Tominaga K, Miura Y, Kasahara T.
Analysis of the survival of mature human eosinophils: interleukin-5 prevents apoptosis
in mature human eosinophils.
Blood.
1991;
78
(10)
2542-2547
- 68
Lopez A F, Sanderson C J, Gamble J R, Campbell H D, Young I G, Vadas M A.
Recombinant human interleukin 5 is a selective activator of human eosinophil function.
J Exp Med.
1988;
167
(1)
219-224
- 69
Fujisawa T, Abu-Ghazaleh R, Kita H, Sanderson C J, Gleich G J.
Regulatory effect of cytokines on eosinophil degranulation.
J Immunol.
1990;
144
(2)
642-646
- 70
Shahabuddin S, Ponath P, Schleimer R P.
Migration of eosinophils across endothelial cell monolayers: interactions among IL-5,
endothelial-activating cytokines, and C-C chemokines.
J Immunol.
2000;
164
(7)
3847-3854
- 71
Kiene M, Csernok E, Müller A, Metzler C, Trabandt A, Gross W L.
Elevated interleukin-4 and interleukin-13 production by T cell lines from patients
with Churg-Strauss syndrome.
Arthritis Rheum.
2001;
44
(2)
469-473
- 72
Zwerina J, Axmann R, Jatzwauk M, Sahinbegovic E, Polzer K, Schett G.
Pathogenesis of Churg-Strauss syndrome: recent insights.
Autoimmunity.
2009;
42
(4)
376-379
- 73
Polzer K, Karonitsch T, Neumann T et al..
Eotaxin-3 is involved in Churg-Strauss syndrome—a serum marker closely correlating
with disease activity.
Rheumatology (Oxford).
2008;
47
(6)
804-808
- 74
Saito H, Tsurikisawa N, Tsuburai T, Oshikata C, Akiyama K.
Cytokine production profile of CD4 + T cells from patients with active Churg-Strauss
syndrome tends toward Th17.
Int Arch Allergy Immunol.
2009;
149
(suppl 1)
61-65
- 75
Tsurikisawa N, Saito H, Tsuburai T et al..
Differences in regulatory T cells between Churg-Strauss syndrome and chronic eosinophilic
pneumonia with asthma.
J Allergy Clin Immunol.
2008;
122
(3)
610-616
- 76
Vaglio A, Martorana D, Maggiore U Secondary and Primary Vasculitis Study Group et
al.
HLA-DRB4 as a genetic risk factor for Churg-Strauss syndrome.
Arthritis Rheum.
2007;
56
(9)
3159-3166
- 77
Wieczorek S, Hellmich B, Arning L et al..
Functionally relevant variations of the interleukin-10 gene associated with antineutrophil
cytoplasmic antibody-negative Churg-Strauss syndrome, but not with Wegener's granulomatosis.
Arthritis Rheum.
2008;
58
(6)
1839-1848
- 78
Salant D J.
Immunopathogenesis of crescentic glomerulonephritis and lung purpura.
Kidney Int.
1987;
32
(3)
408-425
- 79
Briggs W A, Johnson J P, Teichman S, Yeager H C, Wilson C B.
Antiglomerular basement membrane antibody-mediated glomerulonephritis and Goodpasture's
syndrome.
Medicine (Baltimore).
1979;
58
(5)
348-361
- 80
Kelly P T, Haponik E F.
Goodpasture syndrome: molecular and clinical advances.
Medicine (Baltimore).
1994;
73
(4)
171-185
- 81
Fischer E G, Lager D J.
Anti-glomerular basement membrane glomerulonephritis: a morphologic study of 80 cases.
Am J Clin Pathol.
2006;
125
(3)
445-450
- 82
Fisher M, Pusey C D, Vaughan R W, Rees A J.
Susceptibility to anti-glomerular basement membrane disease is strongly associated
with HLA-DRB1 genes.
Kidney Int.
1997;
51
(1)
222-229
- 83
Huey B, McCormick K, Capper J et al..
Associations of HLA-DR and HLA-DQ types with anti-GBM nephritis by sequence-specific
oligonucleotide probe hybridization.
Kidney Int.
1993;
44
(2)
307-312
- 84
Burns A P, Fisher M, Li P, Pusey C D, Rees A J.
Molecular analysis of HLA class II genes in Goodpasture's disease.
QJM.
1995;
88
(2)
93-100
- 85
Kitagawa W, Imai H, Komatsuda A et al..
The HLA-DRB1*1501 allele is prevalent among Japanese patients with anti-glomerular
basement membrane antibody-mediated disease.
Nephrol Dial Transplant.
2008;
23
(10)
3126-3129
- 86
Kalluri R, Danoff T M, Okada H, Neilson E G.
Susceptibility to anti-glomerular basement membrane disease and Goodpasture syndrome
is linked to MHC class II genes and the emergence of T cell-mediated immunity in mice.
J Clin Invest.
1997;
100
(9)
2263-2275
- 87
Liu K, Li Q Z, Delgado-Vega A M Profile Study Group et al.
Kallikrein genes are associated with lupus and glomerular basement membrane-specific
antibody-induced nephritis in mice and humans.
J Clin Invest.
2009;
119
(4)
911-923
- 88
Aitman T J, Dong R, Vyse T J et al..
Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans.
Nature.
2006;
439
(7078)
851-855
- 89
Behmoaras J, Bhangal G, Smith J et al..
Jund is a determinant of macrophage activation and is associated with glomerulonephritis
susceptibility.
Nat Genet.
2008;
40
(5)
553-559
- 90
Lerner R A, Glassock R J, Dixon F J.
The role of anti-glomerular basement membrane antibody in the pathogenesis of human
glomerulonephritis.
J Exp Med.
1967;
126
(6)
989-1004
- 91
Wieslander J, Barr J F, Butkowski R J et al..
Goodpasture antigen of the glomerular basement membrane: localization to noncollagenous
regions of type IV collagen.
Proc Natl Acad Sci U S A.
1984;
81
(12)
3838-3842
- 92
Wieslander J, Bygren P, Heinegård D.
Isolation of the specific glomerular basement membrane antigen involved in Goodpasture
syndrome.
Proc Natl Acad Sci U S A.
1984;
81
(5)
1544-1548
- 93
Wieslander J, Langeveld J, Butkowski R, Jodlowski M, Noelken M, Hudson B G.
Physical and immunochemical studies of the globular domain of type IV collagen: cryptic
properties of the Goodpasture antigen.
J Biol Chem.
1985;
260
(14)
8564-8570
- 94
Hellmark T, Segelmark M, Wieslander J.
Anti-GBM antibodies in Goodpasture syndrome; anatomy of an epitope.
Nephrol Dial Transplant.
1997;
12
(4)
646-648
- 95
Kalluri R, Sun M J, Hudson B G, Neilson E G.
The Goodpasture autoantigen. Structural delineation of two immunologically privileged
epitopes on alpha3(IV) chain of type IV collagen.
J Biol Chem.
1996;
271
(15)
9062-9068
- 96
Saxena R, Bygren P, Butkowski R, Wieslander J.
Entactin: a possible auto-antigen in the pathogenesis of non-Goodpasture anti-GBM
nephritis.
Kidney Int.
1990;
38
(2)
263-272
- 97
Netzer K O, Leinonen A, Boutaud A et al..
The goodpasture autoantigen. Mapping the major conformational epitope(s) of alpha3(IV)
collagen to residues 17-31 and 127-141 of the NC1 domain.
J Biol Chem.
1999;
274
(16)
11267-11274
- 98
Hellmark T, Segelmark M, Unger C, Burkhardt H, Saus J, Wieslander J.
Identification of a clinically relevant immunodominant region of collagen IV in Goodpasture
disease.
Kidney Int.
1999;
55
(3)
936-944
- 99
Meyers K E, Kinniry P A, Kalluri R, Neilson E G, Madaio M P.
Human Goodpasture anti-alpha3(IV)NC1 autoantibodies share structural determinants.
Kidney Int.
1998;
53
(2)
402-407
- 100
Yang R, Hellmark T, Zhao J et al..
Levels of epitope-specific autoantibodies correlate with renal damage in anti-GBM
disease.
Nephrol Dial Transplant.
2009;
24
(6)
1838-1844
- 101
Stevenson A, Yaqoob M, Mason H, Pai P, Bell G M.
Biochemical markers of basement membrane disturbances and occupational exposure to
hydrocarbons and mixed solvents.
QJM.
1995;
88
(1)
23-28
- 102
Donaghy M, Rees A J.
Cigarette smoking and lung haemorrhage in glomerulonephritis caused by autoantibodies
to glomerular basement membrane.
Lancet.
1983;
2
(8364)
1390-1393
- 103
Kalluri R, Meyers K, Mogyorosi A, Madaio M P, Neilson E G.
Goodpasture syndrome involving overlap with Wegener's granulomatosis and anti-glomerular
basement membrane disease.
J Am Soc Nephrol.
1997;
8
(11)
1795-1800
- 104
Short A K, Esnault V L, Lockwood C M.
Anti-neutrophil cytoplasm antibodies and anti-glomerular basement membrane antibodies:
two coexisting distinct autoreactivities detectable in patients with rapidly progressive
glomerulonephritis.
Am J Kidney Dis.
1995;
26
(3)
439-445
- 105
Hellmark T, Niles J L, Collins A B, McCluskey R T, Brunmark C.
Comparison of anti-GBM antibodies in sera with or without ANCA.
J Am Soc Nephrol.
1997;
8
(3)
376-385
- 106
Heeringa P, Brouwer E, Klok P A et al..
Autoantibodies to myeloperoxidase aggravate mild anti-glomerular-basement-membrane-mediated
glomerular injury in the rat.
Am J Pathol.
1996;
149
(5)
1695-1706
- 107
Bolton W K, May W J, Sturgill B C.
Proliferative autoimmune glomerulonephritis in rats: a model for autoimmune glomerulonephritis
in humans.
Kidney Int.
1993;
44
(2)
294-306
- 108
Garcia G E, Truong L D, Li P et al..
Inhibition of CXCL16 attenuates inflammatory and progressive phases of anti-glomerular
basement membrane antibody-associated glomerulonephritis.
Am J Pathol.
2007;
170
(5)
1485-1496
- 109
Fujinaka H, Yamamoto T, Feng L et al..
Anti-perforin antibody treatment ameliorates experimental crescentic glomerulonephritis
in WKY rats.
Kidney Int.
2007;
72
(7)
823-830
- 110
Derry C J, Ross C N, Lombardi G et al..
Analysis of T cell responses to the autoantigen in Goodpasture's disease.
Clin Exp Immunol.
1995;
100
(2)
262-268
- 111
Wu J, Borillo J, Glass W F, Hicks J, Ou C N, Lou Y H.
T cell epitope of alpha3 chain of type IV collagen induces severe glomerulonephritis.
Kidney Int.
2003;
64
(4)
1292-1301
- 112
Arends J, Wu J, Borillo J et al..
T cell epitope mimicry in antiglomerular basement membrane disease.
J Immunol.
2006;
176
(2)
1252-1258
- 113
Wolf D, Hochegger K, Wolf A M et al..
CD4 + CD25 + regulatory T cells inhibit experimental anti-glomerular basement membrane
glomerulonephritis in mice.
J Am Soc Nephrol.
2005;
16
(5)
1360-1370
- 114
Salama A D, Chaudhry A N, Holthaus K A et al..
Regulation by CD25 + lymphocytes of autoantigen-specific T-cell responses in Goodpasture's
(anti-GBM) disease.
Kidney Int.
2003;
64
(5)
1685-1694
- 115
Adler S, Baker P J, Pritzl P, Couser W G.
Detection of terminal complement components in experimental immune glomerular injury.
Kidney Int.
1984;
26
(6)
830-837
- 116
Groggel G C, Salant D J, Darby C, Rennke H G, Couser W G.
Role of terminal complement pathway in the heterologous phase of antiglomerular basement
membrane nephritis.
Kidney Int.
1985;
27
(4)
643-651
- 117
Tipping P G, Boyce N W, Holdsworth S R.
Relative contributions of chemo-attractant and terminal components of complement to
anti-glomerular basement membrane (GBM) glomerulonephritis.
Clin Exp Immunol.
1989;
78
(3)
444-448
- 118
Sheerin N S, Springall T, Carroll M C, Hartley B, Sacks S H.
Protection against anti-glomerular basement membrane (GBM)-mediated nephritis in C3-
and C4-deficient mice.
Clin Exp Immunol.
1997;
110
(3)
403-409
- 119
Otten M A, Groeneveld T W, Flierman R et al..
Both complement and IgG fc receptors are required for development of attenuated antiglomerular
basement membrane nephritis in mice.
J Immunol.
2009;
183
(6)
3980-3988
- 120
Nakamura A, Yuasa T, Ujike A et al..
Fcgamma receptor IIB-deficient mice develop Goodpasture's syndrome upon immunization
with type IV collagen: a novel murine model for autoimmune glomerular basement membrane
disease.
J Exp Med.
2000;
191
(5)
899-906
Patrick H NachmanM.D.
UNC Kidney Center, Campus Box 7155, University of North Carolina
Chapel Hill, NC 27599
Email: patrick_nachman@med.unc.edu