Pharmacopsychiatry 2011; 44: S62-S75
DOI: 10.1055/s-0031-1273707
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

Effects of Dopamine and Glutamate on Synaptic Plasticity: A Computational Modeling Approach for Drug Abuse as Comorbidity in Mood Disorders

Z. Qi1 , 2 , 3 , S. Kikuchi1 , 3 , F. Tretter4 , E. O. Voit1 , 3
  • 1Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, GA, USA
  • 2Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
  • 3Integrative BioSystems Institute, Georgia Institute of Technology, Atlanta, GA, USA
  • 4Isar-Amper-Klinikum gemeinnützige GmbH, Klinikum München-Ost, Haar, Landkreis München, Germany
Further Information

Publication History

Publication Date:
04 May 2011 (online)

Abstract

Major depressive disorder (MDD) affects about 16% of the general population and is a leading cause of death in the United States and around the world. Aggravating the situation is the fact that “drug use disorders” are highly comorbid in MDD patients, and vice versa. Drug use and MDD share a common component, the dopamine system, which is critical in many motivation and reward processes, as well as in the regulation of stress responses in MDD. A potentiating mechanism in drug use disorders appears to be synaptic plasticity, which is regulated by dopamine transmission. In this article, we describe a computational model of the synaptic plasticity of GABAergic medium spiny neurons in the nucleus accumbens, which is critical in the reward system. The model accounts for effects of both dopamine and glutamate transmission. Model simulations show that GABAergic medium spiny neurons tend to respond to dopamine stimuli with synaptic potentiation and to glutamate signals with synaptic depression. Concurrent dopamine and glutamate signals cause various types of synaptic plasticity, depending on input scenarios. Interestingly, the model shows that a single 0.5 mg/kg dose of amphetamine can cause synaptic potentiation for over 2 h, a phenomenon that makes synaptic plasticity of medium spiny neurons behave quasi as a bistable system. The model also identifies mechanisms that could potentially be critical to correcting modifications of synaptic plasticity caused by drugs in MDD patients. An example is the feedback loop between protein kinase A, phosphodiesterase, and the second messenger cAMP in the postsynapse. Since reward mechanisms activated by psychostimulants could be crucial in establishing addiction comorbidity in patients with MDD, this model might become an aid for identifying and targeting specific modules within the reward system and lead to a better understanding and potential treatment of comorbid drug use disorders in MDD.

References

Appendix

Reactions, kinetics, and initial conditions in the mathematical model of signal transduction and trafficking of AMPA receptors

All reactions are represented in the form of an enzymatic reaction or a simple binding reaction, with Kf denoting the rate constant for the forward process, Kb denoting the rate constant for the backward process, and Kc denoting the rate constant for the catalytic step in a Michaelis-Menten kinetics.

Table 1 Reactions and rate constants of signal transduction for DARPP-32 phosphorylation in dendrites of medium spiny neurons in the striatum (see legend of [Fig.2c] for abbreviations).

Reaction

Kf (nM−1.s−1)#

Kb (s−1)

Kc (s−1)

Ref.

D1+DA ↔ D1_DA

1.1E−3

10.0

[31]

D1_DA+Gαβγ ↔ D1_DA_Gαβγ

6.0E−4

1.0E−3

[31]

D1+Gαβγ ↔ D1_Gαβγ

6.0E−5

3.0E−4

[31]

D1_Gαβγ+DA ↔ D1_DA_Gαβγ

3.3E−3

10.0

[31]

D1_DA_Gαβγ → D1_DA+GαGTP+Gβγ

20.0a

[31]

GαGTP → GαGDP

10.0a

[31]

GαGDP+Gβγ → Gαβγ

100.0

[31]

GαGTP+AC5 ↔ GαGTP_AC5

3.9E−2

50.0

[31]

GαGTP_AC5+ATP ↔ GαGTP_AC5_ATP

1.3E−4

2.6E−1

[31]

GαGTP_AC5_ATP ↔ GαGTP_AC5+cAMP

28.5a

2.6E−4b

[31]

PKA+2 cAMP ↔ PKA_cAMP2

3.5E−8c

6.0E−2

[41]

PKA_cAMP2+2 cAMP ↔ PKA_cAMP4

2.7E−5c

0.28

[41]

PKA_cAMP4 ↔ 2 PKAc+PKAr

0.05a

8.5E−8c

[41]

PDE1+cAMP ↔ PDE1_cAMP → PDE1+AMP

2.0E−3

72.0

18.0

[31]

PDE4+cAMP ↔ PDE4_cAMP → PDE4+AMP

2.0E−3

72.0

18.0

[31]

PKAc+PDE1 ↔ PKAc_PDE1 → PKAc+PDE1p

6.0E−3

36.0

9.0

[4]

PDE1p → PDE1

1.0E−1a

[4]

PKAc+PDE4 ↔ PKAc_PDE4 → PKAc+PDE4p

6.0E−3

36.0

9.0

[4]

PDE4p → PDE4

1.0E−1a

[4]

→ Ca2+

1.0E+2e

[4]

Ca2+

2.0a

[4]

2 Ca2++PP2Bi ↔ PP2Bi_Ca2

6.0E−3

0.91

[4]

2 Ca2++PP2Bi_Ca2 ↔ PP2B

0.1

10.0

[4]

AC5+Ca2+ ↔ AC5_Ca

1.0E−3

0.9

[31]

GαGTP+AC5_Ca ↔ GαGTP_AC5_Ca

1.9E−2

25.0

[31]

GαGTP_AC5_Ca+ATP ↔ GαGTP_AC5_Ca_ATP

6.0E−5

1.3E−1

[31]

GαGTP_AC5_Ca_ATP ↔ GαGTP_AC5_Ca+cAMP

14.2a

1.3E−4b

[31]

PP2A+4 Ca2+ ↔ PP2Ac

7.7E−12d

1.0E−2

[31]

PP2A+PKAc ↔ PP2A_PKAc → PP2Ap+PKAc

2.5E−3

0.3

0.1

[70]

PP2Ap → PP2A

4.0E−3a

[31]

CK1 → CK1p

1.0a

[14]

PP2B+CK1p ↔ PP2B_CK1p → PP2B+CK1

3.0E−2

24.0

6.0

[14]

CDK5+Ca2+ ↔ CDK5c

3.0E−3

1.0

PDE1p+cAMP ↔ PDE1p_cAMP → PDE1p+AMP

5.0E−3

80.0

20.0

PDE4p+cAMP ↔ PDE4p_cAMP → PDE4p+AMP

5.0E−3

80.0

20.0

a: Unit in s−1 ; b: Unit in nM−1.s−1 ; c: Unit in nM−2.s−1 ; d: Unit in nM−4.s−1; e: Unit in nM.s−1

#: For a chemical reaction, Kf is the rate constant for the forward process, Kb is the rate constant for the backward process, while Kc is the rate constant for the catalytic step in a Michaelis-Menten kinetics

Table 2 Reactions and rate constants of DARPP-32 phosphorylation in dendrites of medium spiny neurons in the striatum (see legend of [Fig. 2c] for abbreviations).

Reaction

Kf (nM−1.s−1)#

Kb (s−1)

Kc (s−1)

Ref.

D+PKAc ↔ D_PKAc → D34+PKAc

2.7E−3

8.0

2.0

[31]

D34+PP2B ↔ D34_PP2B → D+PP2B

1.0E−2

2.0

0.5

[31]

D+CDK5 ↔ D_CDK5 → D75+CDK5

4.5E−4

2.0

0.5

[31]

D75+PP2Ap ↔ D75_PP2Ap → D+PP2Ap

4.0E−4

12.0

3.0

[31]

D75+PP2Ac ↔ D75_PP2Ac → D+PP2Ac

4.0E−4

12.0

3.0

[31]

D+CK2 ↔ D_CK2 → D102+CK2

4.0E−4

6.4

1.6

[17]

D102 → D

1.6a

D+CK1 ↔ D_CK1 → D137+CK1

4.4E−3

12.0

3.0

[67]

D137+PP2C ↔ D137_PP2C → D+PP2C

7.5E−3

12.0

3.0

[14]

D34+PP1 ↔ D34_PP1

1.0E−2

1.0

[14]

D34_PP1+PP2B ↔ D34_PP1_PP2B → D+PP1+PP2B

1.0E−3

2.0

0.5

[14]

D75+PKAc ↔ D75_PKAc

4.6E−3

2.4

[5]

D+CDK5c ↔ D_CDK5c → D75+CDK5c

1.8E−3

4.0

1.0

2 Ca2++CaM ↔ Ca2CaM

6.0E−3b

9.1

[31]

2 Ca2++Ca2CaM ↔ Ca4CaM

0.1b

1.0E+3

[31]

CaMKII+Ca4CaM ↔ CaMKII_Ca4CaM

0.01

0.8

[31]

CaMKII_Ca4CaM → CaMKIIp+Ca4CaM

5.0E−3a

[31]

CaMKIIp+PP1 ↔ CaMKIIp_PP1 → CaMKII+PP1

1.0E−4

1.4

0.35

[28] [31]

PKAc+I1 ↔ PKAc_I1 → PKAc+I1p

1.4E−3

5.6

1.4

[28] [31]

PP1+I1p ↔ PP1_I1p

1.0E−3

5.0E−3

PP2B+I1p ↔ PP2B_I1p → PP2B+I1

3.8E−3

12.0

3.0

a: Unit in s−1 ; b: Unit in nM−1.s−1 ; c: Unit in nM−2.s−1 ; d: Unit in nM−4.s−1; e: Unit in nM.s−1

#: For a chemical reaction, Kf is the rate constant for the forward process, Kb is the rate constant for the backward process, while Kc is the rate constant for the catalytic step in a Michaelis-Menten kinetics

Table 3 Reactions and rate constants of AMPAR trafficking, AMPAR phosphorylation, and AMPAR dephosphorylation in the postsynapse of striatal projection neurons (see legend of [Fig. 2c] for abbreviations).

Reaction

Kf (nM−1.s−1)

Kb (s−1)

Kc (s−1)

Ref.

cAMPAR+PKAc ↔ cAMPAR_PKAc → cAMPAR_Ser845p+PKAc

2.5E−3

4.0

1.0

[41]

cAMPAR_Ser845p+PP1 ↔ cAMPAR_Ser845p_PP1 → cAMPAR+PP1

5.0E−4

12.0

3.0

[64]

cAMPAR_Ser845p+PP2Ap ↔ cAMPAR_Ser845p_PP2Ap → cAMPAR+PP2Ap

1.7E−4

12.0

3.0

[64]

cAMPAR_Ser845p+PP2Ac ↔ cAMPAR_Ser845p_PP2Ac → cAMPAR+PP2Ac

1.7E−4

12.0

3.0

[64]

cAMPAR_Ser845p+CaMKIIp ↔ cAMPAR_Ser845p_CaMKIIp → cAMPAR_Ser845p_Ser831p+CaMKIIp

1.0E−4

2.0

0.5

[41]

cAMPAR_Ser845p_Ser831p+PP1 ↔ cAMPAR_Ser845p_Ser831p_PP1 → cAMPAR_Ser845p+PP1

5.0E−4

4.0

1.0

[64]

cAMPAR_Ser845p_Ser831p+PP2Ap ↔ cAMPAR_Ser845p_Ser831p_PP2Ap → cAMPAR_Ser845p+PP2Ap

1.7E−4

4.0

1.0

[64]

cAMPAR_Ser845p_Ser831p+PP2Ac ↔ cAMPAR_Ser845p_Ser831p_PP2Ac → cAMPAR_Ser845p+PP2Ac

1.7E−4

4.0

1.0

[64]

mAMPAR+PKAc ↔ mAMPAR_PKAc → mAMPAR_Ser845p+PKAc

2.5E−3

4.0

1.0

[41]

mAMPAR_Ser845p+PP1 ↔ mAMPAR_Ser845p_PP1 → mAMPAR+PP1

5.0E−4

0.8

0.2

[64]

mAMPAR_Ser845p+CaMKIIp ↔ mAMPAR_Ser845p_CaMKIIp → mAMPAR_Ser845p_Ser831p+CaMKIIp

1.0E−4

2.0

0.5

[41]

mAMPAR_Ser845p_Ser831p+PP1 ↔ mAMPAR_Ser845p_Ser831p_PP1 → mAMPAR_Ser845p+PP1

5.0E−4

4.0

1.0

[64]

mAMPAR → cAMPAR+Anchor

0.8E−3a

[18]

cAMPAR_Ser845p_Ser831p+Anchor ↔ mAMPAR_Ser845p_Ser831p

1.0E−5

0.1

[18]

cAMPAR ↔ Bulk_cAMPAR

1a

1.8E−2

[18]

cAMPAR_Ser845p → Bulk_cAMPAR

2.0E−5a

[18]

cAMPAR_Ser845p_Ser831p → Bulk_cAMPAR

2.0E−5a

[18]

a: Unit in s−1

#: For a chemical reaction, Kf is the rate constant for the forward process, Kb is the rate constant for the backward process, while Kc is the rate constant for the catalytic step in a Michaelis-Menten kinetics

Table 4 Initial values for the DARPP-32 phosphorylation system in dendrites of medium spiny neurons in the striatum (see legend of [Fig. 2c] for abbreviations).

Molecule

Concentration (nM)

Reference

DA

10.0

[31]

D1

5.0E+2

[31]

Gαβγ

3.0E+3

[31]

AC5

2.5E+3

[31]

ATP

2.0E+6

[31]

PDE1

5.0E+2

[31]

PDE4

5.0E+2

[31]

DARPP-32

3.0E+4

[19]

PKA

6.6E+3

[21]

PP2Bi

4.0E+3

[31]

CDK5

1.2E+3

[31]

PP2A

8.0E+2

[40] [63]

CK1

2.0E+3

PP2C

2.0E+3

PP1

2.3E+3

[11] [44]

CK2

2.0E+3

Anchor

11.56E+3

[41]

Bulk_cAMPAR

6.0E+3

[41]

CaM

1.0E+4

[45] [52]

CaMKII

2.0E+4

[31]

I1

1.0E+3

Correspondence

E. O. VoitPhD 

313 Ferst Drive

Department of Biomedical

Engineering

GA 30332-0535 Atlanta

USA

Phone: +1/404/385 5057

Fax: +1/404/894 4243

Email: eberhard.voit@bme.gatech.edu