Zusammenfassung
Hintergrund: Das Hornhautendothel ist aufgrund der einfachen Erreichbarkeit der Zellen und der
Beschaffenheit als Monolayers als Angriffspunkt für Gentherapien sehr gut geeignet.
Während Adenoviren aufgrund ihrer Immunogenität für eine In-vitro-Anwendung problematisch
sind, erweisen sich Lentiviren und adenoassoziierte Viren (AAV) als gute Carrier (Vektoren)
für den Transfer genetischer DNS in Endothelzellen (EC). Lentiviren, entwickelt auf
der Basis von HI-Viren, können allerdings die übertragenen Gene in die DNS der Empfängerzelle
integrieren und führen zu einer dauerhaften Überexpression. Zur Minimierung der Risiken
nach einer Alternative zu HIV-basierten Lentiviren suchend, ist Ziel dieser Studie
der Vergleich eines lentiviralen Vektoren mit einem für Menschen apathogenen, nicht
integrierenden AAV. Material und Methoden: Durchflusszytometrischer Vergleich der Proteinexpression nach Verwendung eines lentiviralen
Vektors oder von AAV 2 / 2 zur Transduktion eines grün fluoreszierenden Proteins in
murinen EC (Balb/C) und in humanen EC (Zelllinie und Primärzellen). Proof-of-Principle-Experiment
zur Bestätigung der Funktionalität des lentiviralen Gentransfers durch Übertragung
des anti-apoptotischen Proteins Bcl-xL. Ergebnisse: Die Kinetik der Proteinexpression nach Transduktion von EC mit lentiviralen Vektoren
unterscheidet sich grundlegend von der nach Gentransfer mittels AAV. Im Gegensatz
zum Gentransfer mittels AAV erfolgt eine Überexpression des Reportergens nach lentiviralem
Transfer sehr schnell. Weiterhin konnten deutlich Unterschiede hinsichtlich der Transduktionsrate
zwischen humaner und muriner EC-Linie sowie zwischen humaner EC-Linie und humane Primärzellen
nachgewiesen werden. Die Funktionalität des lentiviralen Gentransfers konnte durch
eine signifikante Reduktion der Apoptose in humanen und murinen EC bestätigt werden.
Schlussfolgerung: AAV-Vektoren stellen eine Alternative zu lentiviralen Vektoren für den Gentransfer
in korneale EC dar. Angesichts der Kultivierung von Spenderhornhäuten in Organkultur
über 4 Wochen vor Transplantation durch Hornhautbanken ist ein Einsatz i. R. der Hornhautkultivierung,
z. B. zur Senkung der Apoptoserate in Spenderhornhäuten, denkbar.
Abstract
Background: Corneal endothelium is an interesting target for in vitro gene transfer strategies
as it is readily accessible thanks to its anatomic structure as a monolayer and its
direct contact to culture medium. Whereas the use of adenoviruses as viral vectors
(carriers) to endothelial cells (EC) has been described as problematic as to its immunogenicity,
lentiviruses and adeno-associated viruses (AAV) are potent vectors for the transfer
of genetic DNA into EC. Lentiviral vectors, developed on the basis of HI-viruses,
can integrate the transferred gene into the host DNA and thus lead to a permanent
protein expression. Evaluating apathogen alternatives to lentiviral vectors for humans,
we herein compared non-integrating AAV to lentiviral gene transfer. Materials and Methods: A comparison was made of the kinetics of expression of a green fluorescent protein
after transduction using a lentiviral vector and AAV 2 / 2 in a murine EC line, human
EC line and human primary cells (flow cytometry). A proof of principle experiment
was conducted to demonstrate the function after lentiviral gene transfer of the anti-apoptotic
gene Bcl-xL. Results: The kinetics of protein expression after transduction of EC using a lentiviral or
an AAV vector show fundamental differences. Contrary to gene transfer using AAV, a
high expression of the reporter protein was readily detectable only hours after transduction
using the lentiral vector. In addition, we could demonstrate distinct differences
in protein expression characteristics between human and murine EC as well as human
EC line and primary human EC. Function could be demonstrated by showing a significant
reduction in apoptosis in both murine and human EC. Conclusion: AAV vectors are an alternative to lentiviral vectors for gene transfer to corneal
EC. Given a cultivation time of donor corneas of up to 4 weeks before transplantation,
translation to eye banking, e. g., to decrease apoptosis in corneal allografts, is
conceivable.
Schlüsselwörter
Kornea - Anatomie - Genetik
Key words
cornea - anatomy - genetics
Literatur
- 1
Armitage W J, Dick A D, Bourne W M.
Predicting endothelial cell loss and long-term corneal graft survival.
Invest Ophthalmol Vis Sci.
2003;
44 (8)
3326-3331
- 2
Waring 3rd G O, Bourne W M, Edelhauser H F et al.
The corneal endothelium. Normal and pathologic structure and function.
Ophthalmology.
1982;
89 (6)
531-590
- 3
Ruusuvaara P, Setala K.
Long-term follow-up of cryopreserved corneal endothelium. A specular microscopic study.
Acta Ophthalmol.
1988;
66 (6)
687-691
- 4
Zhu C, Joyce N C.
Proliferative response of corneal endothelial cells from young and older donors.
Invest Ophthalmol Vis Sci.
2004;
45 (6)
1743-1751
- 5
Dannowski H, Bednarz J, Reszka R et al.
Lipid-mediated gene transfer of acidic fibroblast growth factor into human corneal
endothelial cells.
Exp Eye Res.
2005;
80 (1)
93-101
- 6
Fuchsluger T A, Jurkunas U, Kazlauskas A et al.
Anti-Apoptotic Gene Therapy Prolongs Survival of Corneal Endothelial Cells during
Storage.
Gene Ther.
2011;
[accepted, sent to production]
- 7
Fuchsluger T A, Jurkunas U, Kazlauskas A et al.
Corneal Endothelial Cells Are Protected from Apoptosis by Gene Therapy.
Hum Gene Ther.
2010;
. [Epub ahead of print]
- 8
Ritter T, Gong N, Pleyer U.
Is ex vivo adenovirus mediated gene transfer a therapeutic option for the treatment
of corneal diseases?.
The British journal of ophthalmology.
2005;
89 (6)
648-649
- 9
Parker D G, Coster D J, Brereton H M et al.
Lentivirus-mediated gene transfer of interleukin 10 to the ovine and human cornea.
Clin Experiment Ophthalmol.
2010;
38 (4)
405-413
. Epub 2010 Feb 28
- 10
Schambach A, Baum C.
Clinical application of lentiviral vectors – concepts and practice.
Curr Gene Ther.
2008;
8 (6)
474-482
- 11
Barde I, Salmon P, Trono D.
Production and titration of lentiviral vectors.
Curr Protoc Neurosci.
2010;
Chapter 4
Unit 4.21
- 12
Connolly J B.
Lentiviruses in gene therapy clinical research.
Gene Ther.
2002;
9 (24)
1730-1734
- 13
Lever A M, Strappe P M, Zhao J.
Lentiviral vectors.
J Biomed Sci.
2004;
11 (4)
439-449
- 14
Tsai M L, Chen S L, Chou P I et al.
Inducible adeno-associated virus vector-delivered transgene expression in corneal
endothelium.
Invest Ophthalmol Vis Sci.
2002;
43 (3)
751-757
- 15
Gardlik R, Palffy R, Hodosy J et al.
Vectors and delivery systems in gene therapy.
Med Sci Monit.
2005;
11
RA110-RA121
- 16
Fadok V A, Voelker D R, Campbell P A et al.
Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific
recognition and removal by macrophages.
J Immunol.
1992;
148
2207-2216
- 17
Andree H A, Reutelingsperger C P, Hauptmann R et al.
Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers.
The Journal of biological Chemistry.
1990;
265
4923-4928
- 18
Joyce N C, Zhu C C.
Human corneal endothelial cell proliferation: potential for use in regenerative medicine.
Cornea.
2004;
23
S8-S19
- 19
McCarey B E, Kaufman H E.
Improved corneal storage.
Investigative Ophthalmology.
1974;
13 (3)
165-173
- 20
Yang Y, Nunes F A, Berencsi K et al.
Cellular immunity to viral antigens limits E 1-deleted adenoviruses for gene therapy.
Proceedings of the National Academy of Sciences of the United States of America.
1994;
91 (10)
4407-4411
- 21
Tripathy S K, Black H B, Goldwasser E et al.
Immune responses to transgene-encoded proteins limit the stability of gene expression
after injection of replication-defective adenovirus vectors.
Nature medicine.
1996;
2 (5)
545-550
- 22
Pleyer U, Groth D, Hinz B et al.
Efficiency and toxicity of liposome-mediated gene transfer to corneal endothelial
cells.
Experimental eye research.
2001;
73 (1)
1-7
- 23
Grieger J C, Samulski R J.
Adeno-associated virus as a gene therapy vector: vector development, production and
clinical applications.
Advances in biochemical engineering/biotechnology.
2005;
99
119-145
- 24
Buchschacher Jr G L, Wong-Staal F.
Development of lentiviral vectors for gene therapy for human diseases.
Blood.
2000;
95 (8)
2499-2504
- 25
George A J, Arancibia-Carcamo C V, Awad H M et al.
Gene delivery to the corneal endothelium.
American journal of respiratory and critical care medicine.
2000;
162 (4 Pt 2)
S194-S200
- 26
Williams K A, Jessup C F, Coster D J.
Gene therapy approaches to prolonging corneal allograft survival.
Expert opinion on biological therapy.
2004;
4 (7)
1059-1071
- 27
Williams K A, Brereton H M, Coster D J.
Prospects for genetic modulation of corneal graft survival.
Eye.
2008;
- 28
Barcia R N, Dana M R, Kazlauskas A.
Corneal graft rejection is accompanied by apoptosis of the endothelium and is prevented
by gene therapy with bcl-xL.
Am J Transplant.
2007;
7 (9)
2082-2089
- 29
Bednarz J, Teifel M, Friedl P et al.
Immortalization of human corneal endothelial cells using electroporation protocol
optimized for human corneal endothelial and human retinal pigment epithelial cells.
Acta Ophthalmol Scand.
2000;
78 (2)
130-136
- 30
Kong F, Li W, Li X et al.
Self-complementary AAV5 vector facilitates quicker transgene expression in photoreceptor
and retinal pigment epithelial cells of normal mouse.
Exp Eye Res.
2010;
90 (5)
546-554
Dr. Thomas Armin Fuchsluger
Zentrum für Augenheilkunde, Universitätsklinikum Essen
Hufelandstraße 55
45122 Essen
Telefon: ++ 49/2 01/7 23 29 00
Fax: ++ 49/2 01/7 23 59 17
eMail: thomas.fuchsluger@uk-essen.de