Planta Med 2011; 77(14): 1655-1662
DOI: 10.1055/s-0030-1270968
Analytical Studies
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Seasonal Variation of Phenolic Constituents and Medicinal Activities of Northern Labrador Tea, Rhododendron tomentosum ssp. subarcticum, an Inuit and Cree First Nations Traditional Medicine

Paleah Black1 , Ammar Saleem1 , Andrew Dunford2 , José Guerrero-Analco1 , Brendan Walshe-Roussel1 , Pierre Haddad3 , Alain Cuerrier4 , John T. Arnason1
  • 1Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
  • 2Nunavut Research Institute, Iqaluit, Nunavut, Canada
  • 3Department of Pharmacology, University of Montreal, Montreal, Quebec, Canada
  • 4Plant Biology Research Institute, University of Montreal, Montreal, Quebec, Canada
Further Information

Publication History

received Nov. 14, 2010 revised March 9, 2011

accepted March 12, 2011

Publication Date:
06 April 2011 (online)


Northern Labrador tea, Rhododendron tomentosum ssp. subarcticum, is one of the most commonly used medicinal plants by Inuit and other First Nations peoples of Canada. The phenolic profile and seasonal variation of this commonly used medicinal plant remains largely unknown. To assess optimal harvesting time, R. tomentosum was collected in accordance with traditional knowledge practices bimonthly throughout the snow-free summer in Iqaluit, Nunavut. The antioxidant potency was measured in a DPPH radical scavenging assay, and the anti-inflammatory activity was determined with a TNF-α production assay. The seasonal variation of phenolic content was assessed with HPLC‐DAD for fifteen of the most abundant phenolic compounds; (+)-catechin, chlorogenic acid, para-coumaric acid, quercetin 3-O-galactoside (hyperoside), quercetin 3-O-glucoside (isoquercitrin), quercetin 3-O-rhamnoside (quercitrin), quercetin pentoside, myricetin, quercetin, 3 procyanidins, and 3 caffeic acid derivatives. The most abundant constituent was (+)-catechin, which made up 19 % of the total weight of characterized phenolics. There was significant seasonal variation in the quantity of all fifteen constituents assessed, whereas there was no seasonal variation of their total sum. The antioxidant activity was positively correlated with phenolic content and negatively correlated with daylight hours. The anti-inflammatory activity was negatively correlated with caffeic acid derivative 1 and daylight hours. Together these results demonstrate that the timing of harvest of R. tomentosum impacts the plant's phenolic content and its antioxidant and anti-inflammatory activities.


  • 1 Moerman D E. An analysis of the food plants and drug plants of native North America.  J Ethnopharmacol. 1996;  52 1-22
  • 2 Spoor D C, Martineau L C, Leduc C, Benhaddou-Andaloussi A, Meddah B, Harris C, Burt A, Fraser M H, Coonishish J, Joly E, Cuerrier A, Bennett S A, Johns T, Prentki M, Arnason J T, Haddad P S. Selected plant species from the Cree pharmacopoeia of northern Quebec possess anti-diabetic potential.  Can J Physiol Pharmacol. 2006;  84 847-858
  • 3 Fraser M H, Cuerrier A, Haddad P S, Arnason J T, Owen P L, Johns T. Medicinal plants of Cree communities (Quebec, Canada): antioxidant activity of plants used to treat type 2 diabetes symptoms.  Can J Physiol Pharmacol. 2007;  85 1200-1214
  • 4 Harbilas D, Martineau L C, Harris C S, Adeyiwola-Spoor D C, Saleem A, Lambert J, Caves D, Johns T, Prentki M, Cuerrier A, Arnason J T, Bennett S A, Haddad P S. Evaluation of the antidiabetic potential of selected medicinal plant extracts from the Canadian boreal forest used to treat symptoms of diabetes: part II.  Can J Physiol Pharmacol. 2009;  87 479-492
  • 5 Black P L, Arnason J T, Cuerrier A. Medicinal plants used by the Inuit of Qikiqtaaluk (Baffin Island, Nunavut).  Botany. 2008;  86 157-163
  • 6 Arnason J T, Hebda R J, Johns T. Use of plants for food and medicine by native peoples of eastern Canada.  Can J Bot. 1981;  59 2189-2325
  • 7 Marles R J, Clavelle C, Monteleone L, Tays N, Burns D. Aboriginal plant use in Canada's Northwest boreal forest. Vancouver, Canada; UBC Press 2000: 368
  • 8 Harris C S, Beaulieu L P, Fraser M H, McIntyre K L, Owen P L, Martineau L C, Cuerrier A, Johns T, Haddad P S, Bennett S A, Arnason J T. Inhibition of advanced glycation end product formation by medicinal plant extracts correlates with phenolic metabolites and antioxidant activity.  Planta Med. 2011;  77 196-204
  • 9 Tam T W, Liu R, Arnason J T, Krantis A, Staines W A, Haddad P S, Foster B C. Actions of ethnobotanically selected Cree anti-diabetic plants on human cytochrome P450 isoforms and flavin-containing monooxygenase 3.  J Ethnopharmacol. 2009;  126 119-126
  • 10 Harbourne J B, Williams C A. Leaf survey of flavonoids and simple phenols in the genus Rhododendron.  Phytochemistry. 1971;  10 2727-2744
  • 11 Louis A, Petereit F, Lechtenberg M, Deters A, Hensel A. Phytochemical characterization of Rhododendron ferrugineum and in vitro assessment of an aqueous extract on cell toxicity.  Planta Med. 2010;  76 1550-1557
  • 12 Tomita L Y, Longatto Filho A, Costa M C, Andreoli M A, Villa L L, Franco E L, Cardoso M A. Diet and serum micronutrients in relation to cervical neoplasia and cancer among low-income Brazilian women.  Int J Cancer. 2010;  126 703-714
  • 13 Kaneto H, Katakami N, Matsuhisa M, Matsuoka T A. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis.  Mediators Inflamm. 2010;  , Article ID 453892
  • 14 Fawole O A, Amoo S O, Ndhlala A R, Light M E, Finnie J F, Van Staden J. Anti-inflammatory, anticholinesterase, antioxidant and phytochemical properties of medicinal plants used for pain-related ailments in South Africa.  J Ethnopharmacol. 2010;  127 235-241
  • 15 Clifford M N. Diet-derived phenols in plasma and tissues and their implications for health.  Planta Med. 2004;  70 1103-1114
  • 16 Slimestad R, Verheul M J. Seasonal variations in the level of plant constituents in greenhouse production of cherry tomatoes.  J Agric Food Chem. 2005;  53 3114-3119
  • 17 Tegelberg R, Aphalo P J, Julkunen-Tiitto R. Effects of long-term, elevated ultraviolet-B radiation on phytochemicals in the bark of silver birch (Betula pendula).  Tree Physiol. 2002;  22 1257-1263
  • 18 Grace S. Phenolics as antioxidants. Smirnof N Antioxidants and reactive oxygen species in plants, 1st edition. Oxford, UK; Blackwell Publishing Ltd. 2005: 141-168
  • 19 Yao L, Caffin N, D'Arcy B, Jiang Y, Shi J, Singanusong R, Liu X, Datta N, Kakuda Y, Xu Y. Seasonal variations of phenolic compounds in Australia-grown tea (Camellia sinensis).  J Agric Food Chem. 2005;  53 6477-6483
  • 20 McIntyre K L, Harris C S, Saleem A, Beaulieu L P, Ta C A, Haddad P S, Arnason J T. Seasonal phytochemical variation of anti-glycation principles in lowbush blueberry (Vaccinium angustifolium).  Planta Med. 2009;  75 286-292
  • 21 Environment Canada National Climate Data and Information Archive .Canada's National Climate Archive. Available at. Accessed October 9, 2009
  • 22 National Research Council .National Research Council Canada. Available at. Accessed October 9, 2009
  • 23 McCune L M, Johns T. Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by the indigenous peoples of the North American boreal forest.  J Ethnopharmacol. 2002;  82 197-205
  • 24 Hwang D, Fischer N H, Jang B C, Tak H, Kim J K, Lee W. Inhibition of the expression of inducible cyclooxygenase and proinflammatory cytokines by sesquiterpene lactones in macrophages correlates with the inhibition of MAP kinases.  Biochem Biophys Res Commun. 1996;  226 810-818
  • 25 Saleem A, Harris C S, Asim M, Cuerrier A, Martineau L, Haddad P S, Arnason J T. A RP-HPLC-DAD-APCI/MSD method for the characterisation of medicinal Ericaceae used by the Eeyou Istchee Cree First Nations.  Phytochem Anal. 2010;  21 328-339
  • 26 Bliss L C. Arctic tundra and polar desert biome. Barbour MG, Billings WD North American terrestrial vegetation, 2nd edition. Cambridge; The Cambridge University Press 2000: 1-40
  • 27 Chapin F S I, Shaver G R. Arctic. Chabot BF, Mooney HA Physiological ecology of North America plant communities. New York; Chapman & Hall 1985: 16-40
  • 28 Ziegler A, Joamie A, Hainnu R. Walking with Aalasi: An introduction to edible and medicinal plants. Toronto, Canada; Inhabit Media 2009: 116
  • 29 Surveswaran S, Cai Y Z, Xing J, Corke H, Sun M. Antioxidant properties and principal phenolic phytochemicals of Indian medicinal plants from Asclepiadoideae and Periplocoideae.  Nat Prod Res. 2010;  24 206-221
  • 30 Mustafa R A, Abdul Hamid A, Mohamed S, Bakar F A. Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants.  J Food Sci. 2010;  75 C28-C35
  • 31 Winrow V R, Winyard P G, Morris C J, Blake D R. Free radicals in inflammation: second messengers and mediators of tissue destruction.  Br Med Bull. 1993;  49 506-522
  • 32 D'Acquisto F, May M J, Ghosh S. Inhibition of nuclear factor kappa B (NF-B): an emerging theme in anti-inflammatory therapies.  Mol Interv. 2002;  2 22-35
  • 33 Dufour D, Pichette A, Mshvildadze V, Bradette-Hebert M E, Lavoie S, Longtin A, Laprise C, Legault J. Antioxidant, anti-inflammatory and anticancer activities of methanolic extracts from Ledum groenlandicum Retzius.  J Ethnopharmacol. 2007;  111 22-28
  • 34 Dixon R A, Paiva N L. Stress-induced phenylpropanoid metabolism.  Plant Cell. 1995;  7 1085-1097
  • 35 Jaakola L, Maatta-Riihinen K, Karenlampi S, Hohtola A. Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L) leaves.  Planta. 2004;  218 721-728
  • 36 Stark S, Julkunen-Tiitto R, Holappa E, Mikkola K, Nikula A. Concentrations of foliar quercetin in natural populations of white birch (Betula pubescens) increase with latitude.  J Chem Ecol. 2008;  34 1382-1391
  • 37 Frenkel K, Wei H, Bhimani R, Ye J, Zadunaisky J A, Huang M T, Ferraro T, Conney A H, Grunberger D. Inhibition of tumor promoter-mediated processes in mouse skin and bovine lens by caffeic acid phenethyl ester.  Cancer Res. 1993;  53 1255-1261
  • 38 Matsuoka Y, Hasegawa H, Okuda S, Muraki T, Uruno T, Kubota K. Ameliorative effects of tea catechins on active oxygen-related nerve cell injuries.  J Pharmacol Exp Ther. 1995;  274 602-608

John T. Arnason

Centre for Research in Biotechnology and Biopharmaceuticals
Department of Biology, University of Ottawa

30 Marie Curie

Ottawa, ON, K1N 6N5


Phone: +1 61 35 62 52 62

Fax: +1 61 35 62 54 86