Planta Med 2010; 76(14): 1550-1557
DOI: 10.1055/s-0029-1241016
Pharmacology
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Phytochemical Characterization of Rhododendron ferrugineum and In Vitro Assessment of an Aqueous Extract on Cell Toxicity

Andrea Louis1 , Frank Petereit1 , Matthias Lechtenberg1 , Alexandra Deters1 , Andreas Hensel1
  • 1Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
Further Information

Publication History

received Dec. 21, 2009 revised February 19, 2010

accepted February 24, 2010

Publication Date:
22 March 2010 (online)

Abstract

Within a systematic phytochemical investigation of the leaves of Rhododendron ferrugineum L. (Ericaceae), the volatile oil was isolated (0.7 %) and its constituents were characterized. Eleven flavonoids were isolated and characterized, with quercetin 3-O-[6′′-O-(2-methyl-1-oxobutyl)]-β-D-glucopyranoside and 2R,3R-dihydromyricetin 3-O-β-L-arabinopyranoside as new natural products. Beside monomeric flavan-3-ols (catechin, epicatechin, gallocatechin, epigallocatechin) from the tannin fraction (about 3.5 % calculated as pyrogallol), the dimeric procyanidins B1 to B7 were identified, as well as the trimeric compounds procyanidin C1, epicatechin-(4β → 8)-epicatechin-(4β → 8)-catechin and the trimeric A type-linked cinnamtannin B1. Additionally, phloroacetophenon 4-O-β-D-glucopyranoside and chlorogenic acid were isolated. Water-soluble carbohydrates comprised about 13.5 % of the dried leaves, including fructans (3 %), polysaccharides (1 %) (mainly type II arabinogalactans), glucose, fructose, sucrose, stachyose and raffinose. The in vitro effects on cellular vitality (MTT test), proliferation (BrdU incorporation) and necrosis (LDH release) of an aqueous extract were investigated. The extract did not exert any toxic effects, while the vitality and the proliferation rates of epithelial HaCaT keratinocytes were significantly increased at 100 µg/mL, indicating that the aqueous extract does not have negative effects against cellular activity.

References

  • 1 Passerini M, Ridi M, Papini P. Some substances isolated from plant extracts.  Ann Chim. 1954;  44 783-786
  • 2 Fokina G A, Belova N V, Gorovoi P G. Triterpenoids from Rhododendron kamtschaticum and Rhododendron ferrugineum.  Him Prir Soedin. 1971;  7 377
  • 3 Thieme H, Winkler H. Beitrag zur chemotaxonomischen Bedeutung des Vorkommens von Rhododendrin in der Gattung Rhododendron.  Pharmazie. 1969;  24 703
  • 4 Chosson E, Chaboud A, Chulia A J, Raynaud J. A phloracetophenone glucoside from Rhododendron ferrugineum.  Phytochemistry. 1998;  47 87-88
  • 5 Chosson E, Chaboud A, Chulia A J, Raynaud J. Dihydroflavonol glycosides from Rhododendron ferrugineum.  Phytochemistry. 1998;  49 1431-1433
  • 6 Doss R P, Hatheway W H, Hrutfiord B F. Composition of essential oils of some lipidote Rhododendrons.  Phytochemistry. 1986;  25 1637-1640
  • 7 Plugge P C. Andromedotoxinhaltige Ericaceen.  Arch Pharm. 1891;  229 552-554
  • 8 Sticher O, Soldati F, Lehmann D. High-performance liquid chromatographic seperation and quantitative determination of arbutin, methyarbutin, hydroquinone and hydroquinonemonomethylether in Arctostaphylos, Bergenia, Calluna and Vaccinium species.  Planta Med. 1979;  35 253-261
  • 9 Goez C. Rhododendron ferrugineum L. Hänsel R, Keller K, Rimpler H, Schneider S Hagers Handbuch der Pharmazeutischen Praxis, 5th edition. Berlin, Heidelberg; Springer Verlag 1994: 444-449
  • 10 Kommission E. Evaluation monograph Rhododendri ferruginei folium. Bundesanzeiger Nr. 164 vom 01.09.1990. 
  • 11 Noe C R, Freissmuth J. Capillary zone electrophoresis of aldose enantiomers: separation after derivatization with S-(−)-1-phenylethylamine.  J Chromatogr A. 1995;  704 503-512
  • 12 Hensel A, Deters A M, Müller G, Stark T, Wittschier N, Hofmann T. Occurrence of N-phenylpropenoyl-L-amino acid amide in different herbal drugs and influence on human keratinocytes, human liver cells and against adhesion of Helicobacter pylori to human stomach.  Planta Med. 2007;  73 142-150
  • 13 Brinker A M, Seigler D S. Methods for the detection and quantitative determination of cyanide in plant materials.  Phytochem Bull. 1989;  21 24-31
  • 14 Bicker J, Petereit F, Hensel A. Proanthocyanidins and a phloroglucinol derivative from Rumex acetosa L.  Fitoterapia. 2009;  80 483-495
  • 15 Zippel J, Deters A, Pappai D, Hensel A. A high molecular arabinogalactan from Ribes nigrum L.: influence on cell physiology of human skin fibroblasts and keratinocytes and internalization into cells via endosomal transport.  Carbohydr Res. 2009;  344 1001-1008
  • 16 Deters A M, Schroeder K R, Hensel A. Kiwi fruit (Actinidia chinensis L.) polysaccharides exert stimulating effects on cell proliferation via enhanced growth factor receptors, energy production, and collagen synthesis of human keratinocytes, fibroblasts, and skin equivalents.  J Cell Physiol. 2004;  202 717-722
  • 17 Zhao C, Li X, Liang Y, Fang H, Huang L, Guo F. Comparative analysis of chemical components of essential oils from different samples of Rhododendron with the help of chemometric methods.  Chemometrics Intelligent Lab Syst. 2006;  82 218-228
  • 18 Pigulevskii G V, Belova N V. Hydrocarbon compounds of essential oil Rhododendron dauricum.  Zhurnal Prikl Him. 1964;  37 2772-2775
  • 19 Tamas M, Ciupe R. Volatile oil from Rhododendron kotschyi.  Farmacia. 1974;  22 49-56
  • 20 Arthur H R. A new optically active flavanone from the leaves of Rhododendron farrerae.  J Chem Soc. 1955;  3740-3742
  • 21 Iinuma M, Ohyama M, Tanaka T, Mizuno M, Lang F A. Two C-methylated flavonoid glycosides from the roots of Sophora leachiana.  J Nat Prod. 1991;  54 1144-1146
  • 22 Merfort I, Wendisch D. Flavonoid glycosides from Arnica montana and Arnica chamissonis.  Planta Med. 1987;  53 434-437
  • 23 Merfort I, Wendisch D. New flavonoid glycosides from Arnicae flos DAB 9.  Planta Med. 1992;  58 355-357
  • 24 Suzuki H, Sasaki R, Ogata Y, Nakamura Y, Sakurai N, Kitajima M, Takayama H, Kanaya S, Aoki K, Shibata D, Saito K. Metabolic profiling of flavonoids in Lotus japonicus using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry.  Phytochemistry. 2007;  69 99-111
  • 25 Fossen T, Froystein N A, Andersen O M. Myricetin 3-rhamnosyl(1 → 6)galactoside from Nymphaea x marliacea.  Phytochemistry. 1998;  49 1999-2000
  • 26 Sakushima A, Nishibe S. Taxifolin 3-arabinoside from Trachelospermum jasminoides var. pubescens.  Phytochemistry. 1988;  27 948-950
  • 27 Harborne J B. The flavonoids, advances in research since 1986. London, Glasgow, New York, Tokyo, Melbourne, Madras; Chapman & Hall 1994
  • 28 Beier R C, Mundy B P. Assignment of anomeric configuration and identification of carbohydrate residues by carbon-13 NMR: arabino- and ribopyranosides and furanosides.  J Carbohydr Chem. 1984;  3 253-266
  • 29 Ishii H, Kitagawa I, Matsushita K, Shirakawa K, Tori K, Tozyo T, Yoshikawa M, Yoshimura Y. The configuration and conformation of the arabinose moiety in platycodins, saponins isolated from Platycodon grandiflorum, and mi-saponins from Madhuca longifolia based on carbon-13 and proton NMR spectroscopic evidence. The total structures of the saponins.  Tetrahedron Lett. 1981;  22 1529-1532
  • 30 Markham K R, Mabry T J. Structure and stereochemistry of two new dihydroflavonol glycosides.  Tetrahedron. 1967;  24 823-827
  • 31 Hamamura K, Furukawa K, Hayashi T, Hattori T, Nakano J, Nakashima H, Okuda T, Mizutani H, Hattori H, Ueda M, Urano T, Lloyd K O, Furukawa K. Ganglioside GD3 promotes cell growth and invasion through p 130Cas and paxillin in malignant melanoma cells.  Proc Natl Acad Sci USA. 2005;  102 11041-11046

Prof. Dr. Andreas Hensel

Institute of Pharmaceutical Biology and Phytochemistry
University of Münster

Hittorfstraße 56

48149 Münster

Germany

Phone: + 49 25 18 33 33 80

Fax: + 49 25 18 33 83 41

Email: ahensel@uni-muenster.de

>