ABSTRACT
Sarcoidosis is a disease of unknown etiology, characterized pathologically by noncaseating
granulomas that most commonly involve the lung, skin, lymph nodes, and eyes. Syndromes
with similar pathological and immunologic features to sarcoidosis such as chronic
beryllium disease, hypersensitivity pneumonitis, and tuberculosis illustrate that
granulomatous diseases may or may not have an infectious etiology. Although the etiology
of sarcoidosis remains unknown, recent molecular, genetic, and immunologic studies
strengthen the association of sarcoidosis with infectious antigens. Currently, the
strongest agents considered include Propionibacterium and Mycobacterium species. Independent studies report the presence of microbial nucleic acids and proteins
within sarcoidosis specimens. Th-1 immune responses to mycobacterial proteins have
been detected within sarcoidosis diagnostic bronchoalveolar lavage (BAL). These proteins
are actively secreted by the mycobacterial SecA 2 secretion system and are important
to evade the host immune system. Recent discoveries regarding MHC class II alleles
provide additional insight regarding the role of microbial antigens in sarcoidosis
pathogenesis. Although further investigation is warranted, the recent progress of
independent laboratories, using complementary techniques, strengthens the role of
microbial antigens in sarcoidosis pathogenesis. These studies lay a strong foundation
toward identifying therapeutic targets.
KEYWORDS
Sarcoidosis - etiology - pathogenesis - microbial antigens - mycobacteria
REFERENCES
- 1
Baughman R P.
Sarcoidosis.
Clin Dermatol.
2007;
25
231
- 2
Newman L S, Rose C S, Bresnitz E A ACCESS Research Group et al.
A case control etiologic study of sarcoidosis: environmental and occupational risk
factors.
Am J Respir Crit Care Med.
2004;
170
1324-1330
- 3
Kajdasz D K, Judson M A, Mohr Jr L C, Lackland D T.
Geographic variation in sarcoidosis in South Carolina: its relation to socioeconomic
status and health care indicators.
Am J Epidemiol.
1999;
150
271-278
- 4
Falkinham III J O.
Nontuberculous mycobacteria in the environment.
Clin Chest Med.
2002;
23
529-551
- 5
Hanak V, Kalra S, Aksamit T R, Hartman T E, Tazelaar H D, Ryu J H.
Hot tub lung: presenting features and clinical course of 21 patients.
Respir Med.
2006;
100
610-615
- 6
DiGiulio D B, Romero R, Amogan H P et al..
Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor:
a molecular and culture-based investigation.
PLoS One.
2008;
3
e3056
- 7
Bik E M, Eckburg P B, Gill S R et al..
Molecular analysis of the bacterial microbiota in the human stomach.
Proc Natl Acad Sci U S A.
2006;
103
732-737
- 8
Relman D A, Schmidt T M, MacDermott R P, Falkow S.
Identification of the uncultured bacillus of Whipple’s disease.
N Engl J Med.
1992;
327
293-301
- 9
Ksiazek T G, Erdman D, Goldsmith C S SARS Working Group et al.
A novel coronavirus associated with severe acute respiratory syndrome.
N Engl J Med.
2003;
348
1953-1966
- 10
Whitley R.
The new age of molecular diagnostics for microbial agents.
N Engl J Med.
2008;
358
988-989
- 11
Palacios G, Druce J, Du L et al..
A new arenavirus in a cluster of fatal transplant-associated diseases.
N Engl J Med.
2008;
358
991-998
- 12
Ishige I, Eishi Y, Takemura T et al..
Propionibacterium acnes is the most common bacterium commensal in peripheral lung tissue and mediastinal
lymph nodes from subjects without sarcoidosis.
Sarcoidosis Vasc Diffuse Lung Dis.
2005;
22
33-42
- 13
Ichikawa H, Kataoka M, Hiramatsu J et al..
Quantitative analysis of propionibacterial DNA in bronchoalveolar lavage cells from
patients with sarcoidosis.
Sarcoidosis Vasc Diffuse Lung Dis.
2008;
25
15-20
- 14
McCaskill J G, Chason K D, Hua X et al..
Pulmonary immune responses to Propionibacterium acnes in C57BL/6 and BALB/c mice.
Am J Respir Cell Mol Biol.
2006;
35
347-356
- 15
Drake W P, Pei Z, Pride D T, Collins R D, Cover T L, Blaser M J.
Molecular analysis of sarcoidosis tissues for mycobacterium species DNA.
Emerg Infect Dis.
2002;
8
1334-1341
- 16
Song Z, Marzilli L, Greenlee B M et al..
Mycobacterial catalase-peroxidase is a tissue antigen and target of the adaptive immune
response in systemic sarcoidosis.
J Exp Med.
2005;
201
755-767
- 17
Dubaniewicz A, Dubaniewicz-Wybieralska M, Sternau A et al..
Mycobacterium tuberculosis complex and mycobacterial heat shock proteins in lymph node tissue from patients
with pulmonary sarcoidosis.
J Clin Microbiol.
2006;
44
3448-3451
- 18
Allen S S, Evans W, Carlisle J et al..
Superoxide dismutase A antigens derived from molecular analysis of sarcoidosis granulomas
elicit systemic Th-1 immune responses.
Respir Res.
2008;
9
36
- 19
Ding X L, Cai L, Zhang J Z.
Detection and identification of mycobacterial gene in skin lesions and lymph nodes
in patients with sarcoidosis [in Chinese].
Zhongguo Yi Xue Ke Xue Yuan Xue Bao.
2009;
31
20-23
- 20
Zhou Y, Li H P, Li Q H et al..
Differentiation of sarcoidosis from tuberculosis using real-time PCR assay for the
detection and quantification of Mycobacterium tuberculosis
.
Sarcoidosis Vasc Diffuse Lung Dis.
2008;
25
93-99
- 21
Nakata Y, Ejiri T, Kishi T et al..
Alveolar lymphocyte proliferation induced by Propionibacterium acnes in sarcoidosis patients.
Acta Med Okayama.
1986;
40
257-264
- 22
Nakata Y, Ejiri T, Kishi T et al..
Alveolar lymphocyte proliferation in sarcoidosis patients induced by Propionibacterium acnes [in Japanese].
Nihon Kyobu Shikkan Gakkai Zasshi.
1985;
23
413-419
- 23
Drake W P, Dhason M S, Nadaf M et al..
Cellular recognition of Mycobacterium tuberculosis ESAT-6 and KatG peptides in systemic sarcoidosis.
Infect Immun.
2007;
75
527-530
- 24
Launois P, DeLeys R, Niang M N et al..
T-cell-epitope mapping of the major secreted mycobacterial antigen Ag85A in tuberculosis
and leprosy.
Infect Immun.
1994;
62
3679-3687
- 25
Hajizadeh R, Sato H, Carlisle J et al..
Mycobacterium tuberculosis antigen 85A induces Th-1 immune responses in systemic sarcoidosis.
J Clin Immunol.
2007;
27
445-454
- 26
Carlisle J, Evans W, Hajizadeh R et al..
Multiple Mycobacterium antigens induce interferon-gamma production from sarcoidosis peripheral blood mononuclear
cells.
Clin Exp Immunol.
2007;
150
460-468
- 27
Edwards K M, Cynamon M H, Voladri R K et al..
Iron-cofactored superoxide dismutase inhibits host responses to Mycobacterium tuberculosis
.
Am J Respir Crit Care Med.
2001;
164
2213-2219
- 28
Rigel N W, Gibbons H S, McCann J R, McDonough J A, Kurtz S, Braunstein M.
The accessory SecA2 system of mycobacteria requires ATP binding and the canonical
SecA1.
J Biol Chem.
2009;
284
9927-9936
- 29
Braunstein M, Espinosa B J, Chan J, Belisle J T, Jacobs Jr W R.
SecA2 functions in the secretion of superoxide dismutase A and in the virulence of
Mycobacterium tuberculosis
.
Mol Microbiol.
2003;
48
453-464
- 30
Chen E S, Wahlström J, Song Z et al..
T cell responses to mycobacterial catalase-peroxidase profile a pathogenic antigen
in systemic sarcoidosis.
J Immunol.
2008;
181
8784-8796
- 31
Pathan A A, Wilkinson K A, Klenerman P et al..
Direct ex vivo analysis of antigen-specific IFN-gamma-secreting CD4 T cells in Mycobacterium tuberculosis-infected individuals: associations with clinical disease state and effect of treatment.
J Immunol.
2001;
167
5217-5225
- 32
Oswald-Richter K A, Culver D A, Hawkins C et al..
Cellular responses to mycobacterial antigens are present in bronchoalveolar lavage
fluid used in the diagnosis of sarcoidosis.
Infect Immun.
2009;
77
3740-3748
- 33
Andersen P.
The T cell response to secreted antigens of Mycobacterium tuberculosis
.
Immunobiology.
1994;
191
537-547
- 34
Andersen P, Askgaard D, Ljungqvist L, Bentzon M W, Heron I.
T-cell proliferative response to antigens secreted by Mycobacterium tuberculosis
.
Infect Immun.
1991;
59
1558-1563
- 35
Iannuzzi M C, Iyengar S K, Gray-McGuire C et al..
Genome-wide search for sarcoidosis susceptibility genes in African Americans.
Genes Immun.
2005;
6
509-518
- 36
Rossman M D, Thompson B, Frederick M ACCESS Group et al.
HLA and environmental interactions in sarcoidosis.
Sarcoidosis Vasc Diffuse Lung Dis.
2008;
25
125-132
- 37
Rossman M D, Thompson B, Frederick M ACCESS Group et al.
HLA-DRB1*1101: a significant risk factor for sarcoidosis in blacks and whites.
Am J Hum Genet.
2003;
73
720-735
- 38
Grunewald J, Eklund A.
Löfgren’s syndrome: human leukocyte antigen strongly influences the disease course.
Am J Respir Crit Care Med.
2009;
179
307-312
- 39
Ishihara M, Ishida T, Inoko H et al..
HLA serological and class II genotyping in sarcoidosis patients in Japan.
Jpn J Ophthalmol.
1996;
40
86-94
- 40
Oswald-Richter K, Sato H, Hajizadeh R et al..
Mycobacterial ESAT-6 and katG are recognized by sarcoidosis CD4+ T cells when presented
by the American sarcoidosis susceptibility allele, DRB1*1101.
J Clin Immunol.
2010;
30
157-166
- 41
Zhang F R, Huang W, Chen S M et al..
Genomewide association study of leprosy.
N Engl J Med.
2009;
361
2609-2618
- 42
Zhang F, Liu H, Chen S et al..
Evidence for an association of HLA-DRB1*15 and DRB1*09 with leprosy and the impact
of DRB1*09 on disease onset in a Chinese Han population.
BMC Med Genet.
2009;
10
133
- 43
Saltini C, Pallante M, Puxeddu E et al..
M. avium binding to HLA-DR expressed alleles in silico: a model of phenotypic susceptibility
to sarcoidosis.
Sarcoidosis Vasc Diffuse Lung Dis.
2008;
25
100-116
- 44
Amicosante M, Puxeddu E, Saltini C.
Reactivity to mycobacterial antigens by patients with Lofgren’s syndrome as a model
of phenotypic susceptibility to disease and disease progression.
Am J Respir Crit Care Med.
2009;
180
685-686, author reply 685–686
Kyra A Oswald-RichterPh.D.
Division of Infectious Diseases, Vanderbilt University Medical School, 1161 21st Avenue
South, Medical Center North
Rm. A-3314, Nashville, TN 37232-2363
eMail: Kyra.Richter@vanderbilt.edu