RSS-Feed abonnieren
DOI: 10.1055/s-0030-1258491
Mild and Catalytic Transesterification Reaction Using K2HPO4 for the Synthesis of Methyl Esters
Publikationsverlauf
Publikationsdatum:
09. Juli 2010 (online)

Abstract
K2HPO4 is an efficient catalyst for the transesterification reaction to produce methyl esters. Various functional groups are compatible under the mild reaction conditions.
Key words
transesterification - K2HPO4 - methyl ester - catalyst
- For reviews, see:
- 1a
Chenevert R.Pelchat N.Jacques F. Curr. Org. Chem. 2006, 10: 1067Reference Ris Wihthout Link - 1b
Grasa GA.Singh R.Nolan SP. Synthesis 2004, 971Reference Ris Wihthout Link - 1c
Hoydonckx HE.De Vos DE.Chavan SA.Jacobs PA. Top. Catal. 2004, 27: 83Reference Ris Wihthout Link - 1d
Otera J. In Esterification Wiley-VCH; Weinheim: 2003.Reference Ris Wihthout Link - 1e
Larock R. In Comprehensive Organic Transformations 2nd ed.: Wiley; New York: 1996.Reference Ris Wihthout Link - 1f
Otera J. Chem. Rev. 1993, 93: 1449Reference Ris Wihthout Link - 1g
Mulzer J. In Comprehensive Organic Synthesis Vol. 6:Trost BM.Fleming I. Pergamon Press; New York: 1992.Reference Ris Wihthout Link - For recent progress on the catalytic transesterification, see:
- 2a
Iwasaki T.Maegawa Y.Hayashi Y.Ohshima T.Mashima K. J. Org. Chem. 2008, 73: 5147Reference Ris Wihthout Link - 2b
Ishihara K.Niwa M.Kosugi Y. Org. Lett. 2008, 10: 2187Reference Ris Wihthout Link - 2c
Kondaiah GCM.Reddy LA.Babu KS.Gurav VM.Huge KG.Bandichhor R.Reddy PP.Bhattacharya A.Anand RV. Tetrahedron Lett. 2008, 49: 106Reference Ris Wihthout Link - 2d
Inahashi N.Fujiwara T.Sato T. Synlett 2008, 605Reference Ris Wihthout Link - 2e
Ohshima T.Iwasaki T.Maegawa Y.Yoshiyama A.Mashima K. J. Am. Chem. Soc. 2008, 130: 2944Reference Ris Wihthout Link - 2f
Remme N.Koschek K.Schneider C. Synlett 2007, 491Reference Ris Wihthout Link - 2g
Jiang P.Zhang D.Li Q.Lu Y. Catal. Lett. 2006, 110: 101Reference Ris Wihthout Link - 2h
de Sairre MI.Bronze-Uhle ES.Donate PM. Tetrahedron Lett. 2005, 46: 2705Reference Ris Wihthout Link - 2i
Singh R.Kissling RM.Letellier M.-A.Nolan SP. J. Org. Chem. 2004, 69: 209Reference Ris Wihthout Link - 3
Hamada M.Shinada T.Ohfune Y. Org. Lett. 2009, 11: 4664 - 4
Green TW.Wuts PG. In Protecting Groups in Organic Synthesis 4th ed.: John Wiley & Sons, Inc.; New York: 2007. - 5
Corey EJ.Raju N. Tetrahedron Lett. 1983, 24: 5571 - 6
Rose NGW.Blaskovich MA.Evindar G.Wilkinson S.Luo Y.Fishlock D.Reid C.Lajoie GA. Org. Synth., Coll. Vol. X Wiley; New York: 2004. p.73 - For recent examples, see:
- 7a
Winkler JD.Fitzgerald ME. Synlett 2009, 562Reference Ris Wihthout Link - 7b
Jahn U.Dinca E. Chem. Eur. J. 2009, 15: 58Reference Ris Wihthout Link - 7c
Zhdanko AG.Nenajdenko VG. J. Org. Chem. 2009, 74: 884Reference Ris Wihthout Link - 7d
Ichige T.Okano Y.Kanoh N.Nakata M. J. Org. Chem. 2009, 74: 230Reference Ris Wihthout Link - 7e
Tange S.Fukuhara T.Hara S. Synthesis 2008, 3219Reference Ris Wihthout Link - 7f
Codelli JA.Baskin JM.Agard NJ.Bertozzi CR. J. Am. Chem. Soc. 2008, 130: 11486Reference Ris Wihthout Link - 7g
Nicolaou KC.Dethe DH.Leung GYC.Zou B.Chen DY.-K. Chem. Asian J. 2008, 3: 413Reference Ris Wihthout Link - 7h
Martynow JG.Jozwik J.Szelejewski W.Achmatowicz O.Kutner A.Wisniewski K.Winiarski J.Zegrocka-Stendel O.Golebiewski P. Eur. J. Org. Chem. 2007, 689Reference Ris Wihthout Link - 7i
Bowen ME.Monguchi Y.Sankaranarayanan R.Vagner J.Begay LJ.Xu L.Jagadish B.Hruby VJ.Gillies RJ.Mash EA. J. Org. Chem. 2007, 72: 1675Reference Ris Wihthout Link - 7j
Raghavan B.Johnson RL. J. Org. Chem. 2006, 71: 2151Reference Ris Wihthout Link - 7k
Snider BB.Gao X. Org. Lett. 2005, 7: 4419Reference Ris Wihthout Link - 7l
Bernad PL.Khan S.Korshun VA.Southern EM.Shchepinov MS. Chem. Commun. 2005, 3466Reference Ris Wihthout Link - 7m
Paek S.-M.Seo S.-Y.Kim S.-H.Jung J.-W.Lee Y.-S.Jung J.-K.Suh Y.-G. Org. Lett. 2005, 7: 3159Reference Ris Wihthout Link - 7n
Hansen DB.Wan X.Carroll PJ.Joullie MM. J. Org. Chem. 2005, 70: 3120Reference Ris Wihthout Link - 7o
Kai T.Sun X.-L.Faucher KM.Apkarian RP.Chaikof EL. J. Org. Chem. 2005, 70: 2606Reference Ris Wihthout Link - 7p
Ichige T.Kamimura S.Mayumi K.Sakamoto Y.Terashita S.Ohteki E.Kanoh N.Nakata M. Tetrahedron Lett. 2005, 46: 1263Reference Ris Wihthout Link - 7q
Giner J. Org. Lett. 2005, 7: 499Reference Ris Wihthout Link - 9a
Transesterification of the Ortho Ester 38 to 40: In a similar manner to the reported method,6 38 was synthesized from Fmoc-Gly-OH in 45% yield (two steps). Analytical data of 38: IR (ATR): 3347, 3066, 2944, 2881, 1722, 1525, 1450, 1402, 1245, 1049, 1004, 910 cm-¹. ¹H NMR (400 MHz, CDCl3): δ = 7.75 (d, J = 7.3 Hz, 2 H), 7.60 (d, J = 7.3 Hz, 2 H), 7.38 (t, J = 7.3 Hz, 2 H), 7.27 (t, J = 7.3 Hz, 1 H), 5.09 (br s, 1 H), 4.38 (d, J = 6.9 Hz, 2 H), 4.23 (t, J = 6.9, 2 H), 3.92 (s, 6 H), 3.43 (br d, J = 6.0 Hz, 2 H), 0.82 (s, 3 H). HRMS (FAB): m/z [M + H]+ calcd for C22H24NO5: 382.1655; found: 382.1654.
Reference Ris Wihthout Link - 9b
A mixture of 38 (130 mg, 0.33 mmol) in AcOH-THF-H2O (5:1:1, 0.7 mL) was stirred for 12 h and concentrated under reduced pressure. The remaining AcOH and H2O were removed as an azeotropic mixture of toluene. The crude 39 was subjected to the next step without purification. Analytical data of 39: ¹H NMR (400 MHz, CDCl3): δ = 7.76 (d, J = 7.3 Hz, 2 H), 7.60 (d, J = 7.3 Hz, 2 H), 7.40 (t, J = 7.3 Hz, 2 H), 7.39 (t, J = 7.3 Hz, 2 H), 5.45 (br s, 1 H), 4.41 (d, J = 7.1 Hz, 2 H), 4.21-4.25 (m, 3 H), 4.01 (br s, 1 H), 3.55 (br s, 4 H), 0.85 (s, 3 H).
Reference Ris Wihthout Link - 9c
To a solution of 39 in MeOH (3.5 mL) was added K2HPO4 (0.11 mmol). The mixture was heated to reflux for 1 h and concentrated under reduced pressure. The crude mixture was diluted with EtOAc-hexane (1:1, 10 mL) and filtered through a thin silica gel pad. The filtrate was concentrated under reduced pressure to give 40 in 94% yield. The analytical data were identical to the authentic data.¹0
Reference Ris Wihthout Link - 10
Mineno T.Kansui H. Chem. Pharm. Bull. 2006, 54: 918 - 12 The transesterification reaction
of methyl esters to other esters using K2CO3 has
been reported, see:
Barry J.Bram G.Petit A. Tetrahedron Lett. 1988, 29: 4567 - 13 Catalytic activity and selectivity
of various inorganic salts except for K2HPO4 have
been evaluated for the transesterification reactions of sunflower
oil to produce long-chain fatty acid methyl esters (biodiesel),
see:
Arzamendi G.Arguinarena E.Campo I.Zabala S.Gandia LM. Catal. Today 2008, 133-135: 305
References and Notes
Typical Synthetic Procedure: To a solution of the N-Cbz-threonine ethyl ester (7; 1 mmol) in MeOH (10 mL) was added K2HPO4 (0.1 equiv). The mixture was heated at reflux for 1 h and concentrated under reduced pressure. The crude material was then dissolved in EtOAc-hexane (1:1, 10 mL). The mixture was filtered through a thin silica gel pad. The filtrate was concentrated under reduced pressure to give the N-Cbz-threonine methyl ester(8) in 92% yield.
11The role of K2HPO4 in the mild transesterification reaction has been unclear. In our experiments using various inorganic salts, the reaction rate and product yield were varied and not necessarily dependent on the cationic or anionic nature of inorganic salts.