Abstract
‘Sustainability’ might be regarded as one of
the most important, but misinterpreted key concepts for future developments
in various fields of our everyday life. The importance of sustainable development
in science, for example, was recognized as early as 1987 when the
Brundtland Commission presented their report in which a clear definition
of sustainability (e.g., in education, economics, ecology, and science)
is given. However, not every development that has claimed to be
sustainable fulfills the criteria of the Brundtland definition in
that their achievements are very short-sighted and will not have
a positive influence on the standard of living for future generations.
It is an aim of this account to summarize our approach to a concept
that we call ‘sustainable catalysis’, i.e. the use
of catalysts based upon abundant, inexpensive, metabolizable metals,
such as iron.
1 Introduction
2 Nucleophilic Iron Catalysts as Noble Metal Surrogates
3 Iron-Catalyzed Allylic Substitution
3.1 Development
3.2 Allylic Alkylation - Scope and Limitations
3.3 Allylic Amination
3.4 Allylic Sulfonylation
3.5 Mechanistic Hypothesis and the Stereoselective Course
3.6 ‘Catalytic Surprises’ - A Ligand-Dependent
Mechanistic Dichotomy
4 Carbonyl Activation via Iron Catalysis
4.1 The Hypothesis
4.2 Iron-Catalyzed Transesterification
5 Summary
Key words
iron - catalysis - allylic substitutions - transesterifications
References
<A NAME="RA56010ST-1">1</A> Brundtland Commission [the
World Commission on Environment and Development (WCED)] Our Common Future
Oxford
University;
Oxford:
1987.
<A NAME="RA56010ST-2">2</A>
Smith JL.
J.
Econ. Persp.
2009,
23:
145
<A NAME="RA56010ST-3">3</A>
U.S. Energy Information Administration.
(accessed June 24, 2010).
<A NAME="RA56010ST-4">4</A>
Cabri W.
Rend.
Fis. Acc. Lincei
2007,
18:
271
<A NAME="RA56010ST-5">5</A>
Handbook of Green Chemistry:
Biocatalysis
Vol. 3:
Crabtree RH.
Wiley-VCH;
Weinheim:
2009.
<A NAME="RA56010ST-6">6</A>
Asymmetric
Organocatalysis
Berkessel A.
Gröger H.
Wiley-VCH;
Weinheim:
2005.
<A NAME="RA56010ST-7A">7a</A>
Iron Catalysis in Organic Chemistry
Plietker B.
Wiley-VCH;
Weinheim:
2008.
<A NAME="RA56010ST-7B">7b</A>
Correa A.
García Mancheño O.
Bolm C.
Chem. Soc. Rev.
2008,
37:
1108
<A NAME="RA56010ST-7C">7c</A>
Sherry BD.
Fürstner A.
Acc.
Chem. Res.
2008,
41:
1500
<A NAME="RA56010ST-8">8</A>
Metal
Ions in Life Sciences: The Ubiquitous Roles of Cytochrome P450 Proteins
Vol.
3:
Sigel A.
Sigel H.
Sigel RKO.
John
Wiley & Sons;
Chichester:
2007.
<A NAME="RA56010ST-9">9</A>
Tard C.
Pickett CJ.
Chem. Rev.
2009,
109:
2245
<A NAME="RA56010ST-10">10</A>
In Advances
in Photosynthesis and Respiration: Photosystem I, The Light-Driven
Plastocyanin: Ferredoxin Oxidoreductase
Goldbeck JH.
Springer;
Dordrecht:
2006.
p.712
<A NAME="RA56010ST-11">11</A>
Plietker B.
Dieskau A.
Eur. J. Org. Chem.
2009,
775
<A NAME="RA56010ST-12A">12a</A>
Kharasch MS.
Fields EK.
J. Am. Chem. Soc.
1941,
63:
2316
<A NAME="RA56010ST-12B">12b</A>
Kharasch MS.
Reinmuth O.
Grignard Reactions of Nonmetallic Substances
Constable;
London:
1954.
<A NAME="RA56010ST-12C">12c</A>
Jonas K.
Schieferstein L.
Krüger C.
Tsay
Y.-H.
Angew. Chem. Int.
Ed. Engl.
1979,
18:
550
<A NAME="RA56010ST-12D">12d</A>
Kauffmann T.
Angew.
Chem. Int. Ed. Engl.
1996,
35:
386
<A NAME="RA56010ST-13">13</A>
Tamura M.
Kochi JK.
J. Am. Chem. Soc.
1971,
93:
1487
<A NAME="RA56010ST-14">14</A>
Hieber W.
Beutner H.
Z. Anorg. Allg. Chem.
1963,
320:
101
<A NAME="RA56010ST-15">15</A>
Hieber W.
Beutner H.
Z. Naturforsch., B
1960,
15:
323
<A NAME="RA56010ST-16">16</A>
Hieber W.
Vohler O.
Z. Anorg. Allg. Chem.
1958,
294:
219
<A NAME="RA56010ST-17">17</A>
Bitterwolf TE.
Steele B.
Inorg. Chem. Commun.
2006,
9:
512
<A NAME="RA56010ST-18">18</A>
Brennessel WW.
Ellis JE.
Angew. Chem. Int. Ed.
2007,
46:
598
<A NAME="RA56010ST-19">19</A>
Collman JP.
Acc.
Chem. Res.
1975,
8:
342 ;
and references cited therein
<A NAME="RA56010ST-20A">20a</A>
Roustan J.-L.
Mérour JY.
Houlihan F.
Tetrahedron Lett.
1979,
20:
3721
<A NAME="RA56010ST-20B">20b</A>
Roustan J.-L.
Abedini M.
Baer HH.
J.
Organomet. Chem.
1989,
376:
C20
<A NAME="RA56010ST-21A">21a</A>
Xu Y.
Zhou B.
J.
Org. Chem.
1987,
52:
974
<A NAME="RA56010ST-21B">21b</A>
Zhou B.
Xu Y.
J. Org. Chem.
1988,
53:
4421
<A NAME="RA56010ST-22">22</A>
Holzwarth M.
Dieskau A.
Tabassam M.
Plietker B.
Angew. Chem. Int. Ed.
2009,
48:
7251
<A NAME="RA56010ST-23">23</A>
For a review on stoichiometric applications
of π-allyl iron complexes, see ref. 11.
<A NAME="RA56010ST-24A">24a</A>
Trost BM.
Lee C. In Catalytic Asymmetric Synthesis
2nd
ed.:
Ojima I.
Wiley-VCH;
New
York:
2000.
p.593
<A NAME="RA56010ST-24B">24b</A>
Pfaltz A.
Lautens M. In Comprehensive
Asymmetric Catalysis
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Heidelberg:
1999.
p.833
<A NAME="RA56010ST-24C">24c</A>
Lu Z.
Ma S.
Angew. Chem. Int. Ed.
2008,
47:
258
<A NAME="RA56010ST-24D">24d</A>
Trost BM.
J. Org. Chem.
2004,
69:
5813
<A NAME="RA56010ST-24E">24e</A>
Trost BM.
Crawley ML.
Chem.
Rev.
2003,
103:
2921
<A NAME="RA56010ST-24F">24f</A>
Graening T.
Schmalz H.-G.
Angew. Chem. Int. Ed.
2003,
42:
2580
<A NAME="RA56010ST-24G">24g</A>
Helmchen G.
J. Organomet.
Chem.
1999,
576:
203
<A NAME="RA56010ST-24H">24h</A>
Trost BM.
Van Vranken DL.
Chem.
Rev.
1996,
96:
395
<A NAME="RA56010ST-25A">25a</A>
Kawatsura M.
Ata F.
Wada S.
Hayase S.
Unob H.
Itoh T.
Chem. Commun.
2007,
298
<A NAME="RA56010ST-25B">25b</A>
Kawatsura M.
Ata F.
Hayase S.
Itoh T.
Chem. Commun.
2007,
4283
<A NAME="RA56010ST-25C">25c</A>
Bruneau C.
Renaud J.-L.
Demerseman B.
Chem.
Eur. J.
2006,
12:
5178
<A NAME="RA56010ST-25D">25d</A>
Fernandez I.
Hermatschweiler R.
Pregosin PS.
Albinati A.
Rizzato S.
Organometallics
2006,
25:
323
<A NAME="RA56010ST-25E">25e</A>
Hermatschweiler R.
Fernandez I.
Breher F.
Pregosin PS.
Veiros LF.
Calhorda MJ.
Angew.
Chem. Int. Ed.
2005,
44:
4397
<A NAME="RA56010ST-25F">25f</A>
Mbaye MD.
Demerseman B.
Renaud J.-L.
Toupet L.
Bruneau C.
Angew. Chem. Int. Ed.
2003,
42:
5066
<A NAME="RA56010ST-25G">25g</A>
Trost BM.
Fraisse PL.
Ball ZT.
Angew. Chem. Int. Ed.
2002,
41:
1059
<A NAME="RA56010ST-25H">25h</A>
Morisaki Y.
Kondo T.
Misudo T.-A.
Organometallics
1999,
18:
4742
<A NAME="RA56010ST-26A">26a</A>
Trost BM.
Zhang Y.
J.
Am. Chem. Soc.
2007,
129:
14548
<A NAME="RA56010ST-26B">26b</A>
Malkov AV.
Gouriou L.
Lloyd-Jones GC.
Starý I.
Langer V.
Spoor P.
Vinader V.
Kočovský P.
Chem.
Eur. J.
2006,
12:
6910
<A NAME="RA56010ST-26C">26c</A>
Lloyd-Jones GC.
Krska SW.
Hughes DL.
Gouriou L.
Bonnet VD.
Jack K.
Sun Y.
Reamer RA.
J.
Am. Chem. Soc.
2004,
126:
702
<A NAME="RA56010ST-26D">26d</A>
Trost BM.
Dogra K.
Hachiya I.
Emura T.
Hughes DL.
Krska S.
Reamer RA.
Palucki M.
Yasuda N.
Reider PJ.
Angew.
Chem. Int. Ed.
2002,
41:
1929
<A NAME="RA56010ST-26E">26e</A>
Glorius F.
Pfaltz A.
Org. Lett.
1999,
1:
141
<A NAME="RA56010ST-27A">27a</A>
Malkov AV.
Baxendale IR.
Mansfield DJ.
Kočovský P.
J. Chem. Soc., Perkin Trans. 1
2001,
1234
<A NAME="RA56010ST-27B">27b</A>
Malkov AV.
Baxendale IR.
Dvok D.
Mansfield
DJ.
Kočovský P.
J. Org.
Chem.
1999,
64:
2737
<A NAME="RA56010ST-27C">27c</A>
Lloyd-Jones GC.
Pfaltz A.
Angew. Chem.
Int. Ed.
1995,
34:
462
<A NAME="RA56010ST-27D">27d</A>
Frisell H.
Akermark B.
Organometallics
1995,
14:
561
<A NAME="RA56010ST-28A">28a</A>
Ueno S.
Hartwig JF.
Angew.
Chem. Int. Ed.
2008,
47:
1928
<A NAME="RA56010ST-28B">28b</A>
Spiess S.
Welter C.
Franck G.
Taquet J.-P.
Helmchen G.
Angew.
Chem. Int. Ed.
2008,
47:
7652
<A NAME="RA56010ST-28C">28c</A>
Helmchen G.
Dahnz A.
Dübon P.
Schelwies M.
Weihofen R.
Chem.
Commun.
2007,
675
<A NAME="RA56010ST-28D">28d</A>
Markovic D.
Hartwig JF.
J. Am. Chem. Soc.
2007,
129:
11680
<A NAME="RA56010ST-28E">28e</A>
Yamashita Y.
Gopalarathnam A.
Hartwig JF.
J.
Am. Chem. Soc.
2007,
129:
7508
<A NAME="RA56010ST-28F">28f</A>
Weix DJ.
Hartwig JF.
J.
Am. Chem. Soc.
2007,
129:
7720
<A NAME="RA56010ST-28G">28g</A>
Pouy MJ.
Leitner A.
Weix DJ.
Ueno S.
Hartwig JF.
Org. Lett.
2007,
9:
3949
<A NAME="RA56010ST-28H">28h</A>
Shekhar S.
Trantow B.
Leitner A.
Hartwig
JF.
J. Am.
Chem. Soc.
2006,
128:
11770
<A NAME="RA56010ST-28I">28i</A>
Takeuchi R.
Kezuka S.
Synthesis
2006,
3349
<A NAME="RA56010ST-29A">29a</A>
Leahy DK.
Evans PA. In Modern Rhodium-Catalyzed Organic Reactions
Evans PA.
Wiley-VCH;
Weinheim:
2005.
p.191
<A NAME="RA56010ST-29B">29b</A>
Menard F.
Chapman
TM.
Dockendorff C.
Lautens M.
Org. Lett.
2006,
8:
4569
<A NAME="RA56010ST-29C">29c</A>
Ashfeld BA.
Miller KA.
Smith AJ.
Tran K.
Martin SF.
Org. Lett.
2005,
7:
1661
<A NAME="RA56010ST-29D">29d</A>
Evans PA.
Robinson JE.
Moffett KK.
Org. Lett.
2001,
3:
3269
<A NAME="RA56010ST-29E">29e</A>
Evans PA.
Kennedy LJ.
Org.
Lett.
2000,
2:
2213
<A NAME="RA56010ST-29F">29f</A>
Evans PA.
Leahy DK.
J.
Am. Chem. Soc.
2000,
122:
5012
<A NAME="RA56010ST-29G">29g</A>
Evans PA.
Nelson JD.
J.
Am. Chem. Soc.
1998,
120:
5581
<A NAME="RA56010ST-30">30</A>
Plietker B.
Angew.
Chem. Int. Ed.
2006,
45:
1469
<A NAME="RA56010ST-31">31</A>
Cygler M.
Ahmed FR.
Forgues A.
Roustan JLA.
Inorg.
Chem.
1983,
22:
1026
<A NAME="RA56010ST-32">32</A>
Trivede R.
Tunge JA.
Org. Lett.
2009,
11:
5650
<A NAME="RA56010ST-33">33</A>
Plietker B.
Angew.
Chem. Int. Ed.
2006,
45:
6053
<A NAME="RA56010ST-34">34</A>
Jegelka M.
Plietker B.
Org. Lett.
2009,
11:
3462
<A NAME="RA56010ST-35">35</A>
N-Heterocyclic Carbenes
in Transition Metal Catalysis
Glorius F.
Springer;
Berlin:
2007.
<A NAME="RA56010ST-36">36</A>
Plietker B.
Dieskau A.
Möws K.
Jatsch A.
Angew. Chem. Int. Ed.
2008,
47:
198
<A NAME="RA56010ST-37">37</A>
Schreiber J.
Faber K.
Griengl H.
Chem.
Eur. J.
2008,
14:
8060
<A NAME="RA56010ST-38A">38a</A>
Otera J.
Chem. Rev.
1993,
93:
1449
<A NAME="RA56010ST-38B">38b</A>
Otera J.
Acc. Chem.
Res.
2004,
37:
288
<A NAME="RA56010ST-39">39</A>
Magens S.
Ertelt M.
Jatsch A.
Plietker B.
Org. Lett.
2008,
10:
53