Int J Sports Med 2010; 31(8): 567-571
DOI: 10.1055/s-0030-1254136
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Dose-Response Relationship Between Interval Training Frequency and Magnitude of Improvement in Lactate Threshold

L. Dalleck1 , T. T. Bushman2 , R. D. Crain2 , M. M. Gajda2 , E. M. Koger2 , L. A. Derksen2
  • 1Minnesota State University, Mankato, Human Performance, Mankato, United States
  • 2University of Wisconsin-Eau Claire, Kinesiology, United States
Further Information

Publication History

accepted after revision April 27, 2010

Publication Date:
09 June 2010 (online)

Abstract

The purpose of this study was to determine if interval training at 110–120% of peak power output one and two days/wk in addition to habitual training would elicit improvements in lactate threshold (LT) in a dose response manner. Twenty physically active individuals completed this study: age – 21.1±1.3 yr, height – 172.1±7.4 cm, body mass – 68.4±9.1 kg, VO2max – 45.3±5.2 mL/kg/min; and were randomly assigned into two separate 6 wk training groups – either 1 day/wk interval training or 2 days/wk interval training at 110–120% of peak workload (from an incremental exercise test) on a cycle ergometer. After 6 wk, LT (% VO2max) increased significantly (p<0.05) in both 1 day/wk (4.3±3.2%) and 2 days/wk (8.2±2.6%) groups. A two-factor mixed ANOVA identified a significant interaction between exercise frequency and LT (%VO2max) values (p<0.05) indicating that LT responded differently to 1 day/wk and 2 days/wk of interval training. Findings from the present study show high-intensity, interval training to be a successful strategy for modifying this important metabolic threshold. Moreover, results suggest that there is a dose-response relationship between frequency of interval training and the magnitude of LT improvement.

References

  • 1 Acevedo EO, Goldfarb AH. Increased training intensity effects on plasma lactate, ventilatory threshold, and endurance.  Med Sci Sports Exerc. 1989;  21 563-568
  • 2 American College of Sports Medicine .Guidelines for Exercise Testing and Prescription (8th Ed). Baltimore: Lippincott, Williams & Wilkins; 2009
  • 3 Beaver WL, Wasserman K, Whipp BJ. Improved detection of lactate threshold during exercise using a log-log transformation.  J Appl Physiol. 1985;  59 1936-1940
  • 4 Belman MJ, Gaesser GA. Exercise training below and above the lactate threshold in the elderly.  Med Sci Sports Exerc. 1991;  23 562-568
  • 5 Beneke R. Maximal lactate steady state concentration (MLSS): experimental and modeling approaches.  Eur J Appl Physiol. 2003;  88 361-369
  • 6 Billat V, Sirvent P, Lepretre PM, Koralsztein JP. Training effect on performance, substrate balance and blood lactate concentration at maximal lactate steady state in master endurance runners.  Pflugers Arch. 2004;  447 875-883
  • 7 Bishop D, Jenkins DG, MacKinnon LT. The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women.  Med Sci Sports Exerc. 1998;  30 1270-1275
  • 8 Bosquet L, Leger L, Legros P. Methods to determine aerobic performance.  Sports Med. 2002;  32 675-700
  • 9 Burgomaster KA, Cermak NM, Phillips SM, Benton CR, Bonen A, Gibala MJ. Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining.  Am J Physiol. 2007;  292 R1970-R1976
  • 10 Burgomaster KA, Hughes SC, Heighenhauser JF, Bradwell SN, Gibala MH. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans.  J Appl Physiol. 2005;  98 1985-1990
  • 11 Coyle EF, Coggan A, Hopper M, Walters TJ. Determinants of endurance in well-trained cyclists.  J Appl Physiol. 1988;  64 2622-2630
  • 12 Demarle AP, Heugas AM, Slawinski JJ, Tricot VM, Koralsztein JP, Billat VL. Whichever the initial training status, any increase in velocity at lactate threshold appears as a major factor in improved time to exhaustion at the same severe velocity after training.  Arch Physiol Biochem. 2003;  111 167-176
  • 13 Dubouchaud H, Butterfield GE, Wolfe EE, Bergman BC, Brooks GA. Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle.  Am J Physiol. 2000;  278 E571-E579
  • 14 Edge J, Bishop D, Goodman C, Dawson B. Effects of high- and moderate-intensity training on metabolism and repeated sprints.  Med Sci Sports Exerc. 2005;  37 1975-1982
  • 15 Esfarjani F, Laursen PB. Manipulating high-intensity interval training: Effects on VO2max, the lactate threshold and 3 000 m running performance in moderately trained males.  J Sports Sci Med. 2007;  10 27-35
  • 16 Faude O, Kindermann W, Meyer T. Lactate threshold concepts: how valid are they?.  Sports Med. 2009;  39 469-490
  • 17 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 18 Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences.  J Appl Physiol. 1984;  56 831-838
  • 19 Londeree BR. Effect of training on lactate/ventilatory thresholds: a meta-analysis.  Med Sci Sport Exerc. 1997;  29 837-843
  • 20 MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM. Muscle performance and enzymatic adaptations to sprint interval training.  J Appl Physiol. 1998;  84 2138-2142
  • 21 McGehee JC, Tanner CJ, Houmard JA. A comparison of methods for estimating the lactate threshold.  J Strength Cond Res. 2005;  19 553-558
  • 22 Messonnier L, Freund H, Denis C, Dormois D, Dufour AB, Lacour JR. Time to exhaustion at VO2max is related to the lactate exchange and removal abilities.  Int J Sports Med. 2002;  23 433-438
  • 23 Midgley AW, McNaughton LR, Jones AM. Training to enhance the physiological determinants of long-distance running performance: can valid recommendations be given to runners and coaches based on current scientific knowledge?.  Sports Med. 2007;  37 857-880
  • 24 Myers J, Ashley E. Dangerous curves: A perspective on exercise, lactate and the anaerobic threshold.  Chest. 1997;  111 787-795
  • 25 Philip A, Macdonald AL, Carter H, Watt PW, Pringle JS. Maximal lactate steady state as a training stimulus.  Int J Sports Med. 2008;  29 475-479
  • 26 Plato PA, McNulty M, Crunk SM, Ergun AT. Predicting lactate threshold using ventilatory threshold.  Int J Sports Med. 2008;  29 732-737
  • 27 Poole DC, Gaesser GA. Responses of ventilatory and lactate thresholds to continuous and interval training.  J Appl Physiol. 1985;  58 1115-1121
  • 28 Robergs RA, Roberts S. Exercise Physiology: Exercise, Performance, and Clinical Applications. St Louis, MO: Mosby; 1997
  • 29 Sotero RC, Pardono E, Campbell CSG, Simoes HG. Indirect assessment of lactate minimum and maximal blood lactate steady-state intensity for physically active individuals.  J Strength Cond Res. 2009;  23 847-853
  • 30 Vachon JA, Bassett DR, Clarke S Jr. Validity of the heart rate deflection point as a predictor of lactate threshold during running.  J Appl Physiol. 1989;  87 452-459
  • 31 Wasserman K, Hansen JE, Sue DY, Casaburi R, Whipp BJ. Principles of Exercise Testing and Interpretation (3rd Ed). Philadelphia, PA: Lippincott Williams & Wilkins; 1999
  • 32 Weltman A, Seip RL, Snead D, Weltman JY, Haskvitz EM, Evans WS, Veldhuis JD, Rogol AD. Exercise training at and above the lactate threshold in previously untrained women.  Int J Sports Med. 1992;  13 257-263
  • 33 Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD, Hawley JA. Skeletal muscle buffering capacity and endurance performance after high-intensity training by well-trained cyclists.  Eur J Appl Physiol. 1997;  75 7-13

Correspondence

Dr. Lance Dalleck

Minnesota State University

Mankato, Human Performance

1400 Highland Center

56001 Mankato

United States

Phone: +1/507/389 6715

Fax: +1/507/389 4084

Email: lance.dalleck@mnsu.edu

    >