Sprache · Stimme · Gehör 2010; 34(2): 106-111
DOI: 10.1055/s-0030-1253429
Schwerpunktthema

© Georg Thieme Verlag KG Stuttgart · New York

Elektrophysiologische und hämodynamische Verfahren zur Untersuchung von Sprache

Electrophysiological and Haemodynamic Techniques for the Investigation of LanguageH. M. Müller1 , S. Weiss1
  • 1AG Experimentelle Neurolinguistik, CITEC, Universität Bielefeld
Further Information

Publication History

Publication Date:
10 June 2010 (online)

Zusammenfassung

Der Artikel stellt aktuelle neurowissenschaftliche Methoden und Verfahren vor, mit denen Sprachverarbeitung im Gehirn untersucht werden kann. Es werden invasive klinische Elektrostimulationstechniken, die semi-invasive Positronenemissionstomografie (PET) sowie die nicht-invasiven Verfahren der Magnetresonanztomografie (MRT), Transkraniellen Magnetstimulation (TMS) und Nahinfrarotspektroskopie (NIRS) vorgestellt. Die Analysemethoden der Elektroenzephalografie (EEG) und Magnetenzephalografie (MEG) haben bereits eine jahrzehntelange Entwicklung durchlaufen, daher finden insbesondere spektralanalytische Aspekte der EEG/MEG-Auswertung stärkere Erwähnung. Insbesondere für die Untersuchung höherer kognitiver Funktionen wie Sprache zeigen solche Methoden, die in neuronalen Netzen parallel ablaufende Prozesse über die Zeit hin darstellen können, Vorteile im Vergleich zu Methoden, die die summierte Neuronenaktivität einer Hirnregion erfassen. Auch neuere Verfahren zur Messung neuronaler Synchronisation, wie z. B. die Berechnung der Phasensynchronisation oder Dynamic Causal Modeling (DCM) zur Darstellung von Konnektivitätsnetzwerken, werden vorgestellt.

Abstract

This article gives an overview of current neuroscientific methods and techniques for investigating language based on brain activity. Starting with invasive electrostimulation during neurosurgery and preoperative diagnostics, semi-invasive methods such as positron emission tomography (PET), as well as non-invasive methods such as magnetic resonance imaging (MRI), near infrared spectroscopy (NIRS), and transcranial magnetic stimulation (TMS) are introduced. Since the evaluation techniques for electrophysiological methods such as electroencephalography (EEG) and magnetoencephalography (MEG) were developed decades ago, a focus is set on spectral analytical EEG/MEG evaluation techniques. In particular with respect to higher cognitive functions such as meaning construction in language interaction, methods that are suitable for detecting parallel processes over time in neuronal networks (“neural cell assemblies”) show some advantages in comparison to methods which localise summarised neural activity. Accordingly, current developments in detecting neural synchronisation, such as phase synchronisation in EEG or dynamic causal modelling (DCM) in fMRI are presented.

Literatur
  • 1 Penfield W, Rasmussen T. The Cerebral Cortex of Man: A Clinical Study of Localization of Function.. New York: Macmillan; 1950
  • 2 Müller HM. Neurobiologische Grundlagen der Sprache.. In: Rickheit G, Hermann T, Deutsch W, Hrsg. Psycholinguistik: Ein internationales Handbuch. Berlin: de Gruyter; 2003: 57-80
  • 3 Weiss S, Müller HM. The contribution of EEG coherence to the inves­tigation of language.  Brain Lang. 2003;  85 325-343
  • 4 Ojemann G, Ojemann J, Lettich E. et al . Cortical language localization in left, dominant hemisphere: An electrical stimulation mapping inves­tigation in 117 patients.  J Neurosurg. 1989;  71 316-326
  • 5 Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language mapping for glioma resection.  N Engl J Med. 2008;  358 18-27
  • 6 Devlin AM, Cross JH, Harkness W. et al . Clinical outcomes of hemispherectomy for epilepsy in childhood and adolescence.  Brain. 2003;  126 556-566
  • 7 Van Lancker-Sidtis D. When only the right hemisphere is left: Studies in language and communication.  Brain Lang. 2004;  91 199-211
  • 8 Ojemann SG, Berger MS, Lettich E. et al . Localization of language function in children: results of electrical stimulation mapping.  J Neurosurg. 2003;  98 465-470
  • 9 Wood AG, Harvey AS, Wellard RM. et al . Language cortex activation in normal children.  Neurol. 2004;  63 1035-1044
  • 10 Tyler LK, Russell R, Fadili J. et al . The neural representation of nouns and verbs: PET studies.  Brain. 2001;  124 1619-1634
  • 11 Bright P, Moss H, Tyler LK. Unitary vs multiple semantics: PET studies of word and picture processing.  Brain Lang. 2004;  89 417-432
  • 12 Caplan D, Alpert N, Waters G. PET studies of syntactic processing with auditory sentence presentation.  NeuroImage. 1999;  9 343-351
  • 13 Fries PA. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence.  Trends Cogn Sci. 2005;  9 474-480
  • 14 Niedermeyer E, Lopes da Silva F. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. 5.. Aufl Maryland: Lippincott Williams & Wilkins; 2004
  • 15 Papanicolao AC. Clinical Magnetoencephalography and Magnetic Source Imaging.. Cambridge: Cambridge University Press; 2009
  • 16 Kutas M, Federmeier KD. Event-related brain potential (ERP) studies of sentence processing.. In: Gaskell MG Hrsg. The Oxford Handbook of Psycholinguistics. Oxford: Oxford University Press; 2009: 385-406
  • 17 Swaab T, Brown C, Hagoort P. Spoken sentence comprehension in aphasia: event-related potential evidence for a lexical integration deficit.  J of Cogn Neurosci. 1997;  9 39-66
  • 18 Hensel S, Rockstroh B, Berg P. et al . Left-hemispheric abnormal EEG activity in relation to impairment and recovery in aphasic patients.  Psychophysiol. 2004;  41 394-400
  • 19 Nunez PL, Srinivasan R. Electric Fields of the Brain: The Neurophysics of EEG.. Oxford: Oxford University Press; 2006
  • 20 Petsche H, Etlinger SC. EEG and thinking.. Wien: Österreichische Akademie der Wissenschaften; 1998
  • 21 Weiss S, Rappelsberger P. EEG coherences within the 13-18 Hz band as correlates of a distinct lexical organization of concrete and abstract nouns in humans.  Neurosci Lett. 1996;  209 17-20
  • 22 Weiss S, Rappelsberger P. Long-range EEG synchronization during word encoding correlates with successful memory performance.  Cogn Brain Res. 2000;  9 299-312
  • 23 Bastiaansen MC, Oostenveld R, Jensen O. et al . I see what you mean: theta power increases are involved in the retrieval of lexical semantic information.  Brain Lang. 2008;  106 15-28
  • 24 Hagoort P, Hald L, Bastiaansen M. et al . Integration of word meaning and world knowledge in language comprehension.  Science. 2004;  304 438-441
  • 25 Hald LA, Bastiaansen MC, Hagoort P. EEG theta and gamma responses to semantic violations in online sentence processing.  Brain Lang. 2006;  96 90-105
  • 26 Berghoff C, Müller HM, Weiss S. Processing figurative language: an EEG study.  Brain Topography. 2005;  17 181
  • 27 Haarmann HJ, Cameron KA, Ruchkin DS. Neural synchronization mediates on-line sentence processing: EEG coherence evidence from filler-gap constructions.  Psychophysiol. 2002;  39 820-825
  • 28 Weiss S, Müller HM, Schack B. et al . Increased neuronal synchronization accompanying sentence comprehension.  Int J Psychophysiol. 2005;  57 129-141
  • 29 Pulvermüller F, Birbaumer N, Lutzenberger W. et al . High-frequency brain activity: its possible role in attention, perception and language processing.  Prog Neurobiol. 1997;  52 427-445
  • 30 Hannemann R, Obleser J, Eulitz C. Top-down knowledge supports the retrieval of lexical information from degraded speech.  Brain Res. 2007;  1153 134-143
  • 31 Braeutigam S, Bailey AJ, Swithenby SJ. Phase-locked gamma band responses to semantic violation stimuli.  Cogn Brain Res. 2001;  10 365-377
  • 32 Bastiaansen M, Hagoort P. Oscillatory neuronal dynamics during language comprehension.  Prog Brain Res. 2006;  159 179-196
  • 33 Fell J, Klaver P, Elfadil H. et al . Rhinal-hippocampal theta coherence during declarative memory formation: interaction with gamma synchronization?.  Eur J Neurosci. 2003;  17 1082-1088
  • 34 Schack B, Weiss S. Quantification of phase synchronization phenomena and their importance for verbal memory processes.  Biol Cybern. 2005;  92 275-287
  • 35 Weishaupt D, Köchli VD, Marincek B. Wie funktioniert MRI?: Eine Einführung in Physik und Funktionsweise der Magnetresonanzbildgebung. 6.. Aufl Berlin: Springer; 2009
  • 36 Friston KJ, Büchel C, Fink GR. et al . Psychophysiological and modulatory interactions in Neuroimaging.  NeuroImage. 1997;  6 218-229
  • 37 Büchel C, Friston KJ. Assessing interactions among neuronal systems using functional neuroimaging.  Neural Netw. 2000;  13 871-882
  • 38 Friston KJ, Harrison L, Penny WD. Dynamic causal modelling.  NeuroImage. 2003;  19 1273-1302
  • 39 Heim S, Eickhoff SB, Ischebeck AK. et al . Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM.  Hum Brain Mapp. 2009;  30 392-402
  • 40 Ghio M, Tettamanti M. Semantic domain-specific functional integra­tion for action-related vs. abstract concepts.  Brain Lang. 2008;  DOI: doi:10.1016/j.bandl.2008.11.002
  • 41 Prat CS, Keller TA, Just MA. Individual differences in sentence comprehension: a functional magnetic resonance imaging investigation of syntactic and lexical processing demands.  J Cogn Neurosci. 2007;  19 1950-1963
  • 42 Lauro LJ, Tettamanti M, Cappa SF. et al . Idiom comprehension: a prefrontal task?.  Cereb Cortex. 2008;  18 162-170
  • 43 Sonty SP, Mesulam MM, Weintraub S. et al . Altered effective connectivity within the language network in primary progressive aphasia.  J Neurosci. 2007;  27 1334-1345
  • 44 Catani M, ffytche DH. The rises and falls of disconnection syndromes.  Brain. 2005;  128 2224-2239
  • 45 Friederici AD, Bahlmann J, Heim S. et al . The brain differentiates human and non-human grammars: functional localization and structural connectivity.  Proc Natl Acad Sci USA.. 2006;  103 2458-2463
  • 46 Saur D, Kreher BW, Schnell S. et al . Ventral and dorsal pathways for language.  Proc Natl Acad Sci USA.. 2008;  105 18035-18040
  • 47 Eschweiler GW. Physikalische und physiologische Grundlagen der transkraniellen Magnetstimulation.. In: Eschweiler GW, Wild B, Bartels M Hrsg. Elektromagnetische Therapien in der Psychiatrie. Darmstadt: Steinkopff; 2003: 143-150
  • 48 Liepert J. Grundlagen und Anwendung der Transkraniellen Magnetstimulation.  Neurophysiol Lab. 2007;  29 70-78
  • 49 Pascual-Leone A, Walsh V, Rothwell J. Transcranial magnetic stimulation in cognitive neuroscience – virtual lesion, chronometry, and functional connectivity.  Curr Opin in Neurobiol. 2000;  10 232-237
  • 50 Devlin JT, Watkins KE. Stimulating language: insights from TMS.  Brain. 2007;  130 610-622
  • 51 Eschweiler GW, Wild B, Bartels M,. Hrsg Elektromagnetische Therapien in der Psychiatrie: Elektrokrampftherapie (EKT) Transkranielle Magnetstimulation (TMS) und verwandte Verfahren.. Darmstadt: Steinkopff; 2003
  • 52 Stewart L, Walsh V, Frith U. et al . Transcranial magnetic stimulation produces speech arrest but not song arrest.  Ann N Y Acad Sci. 2001;  433-435
  • 53 Plewnia C. Transkranielle Magnetstimulation in der neuropsychiatrischen Forschung.. Elektromagnetische Therapien in der Psychiatrie. Darmstadt: Steinkopff; 2003: 160-178
  • 54 Mottaghy FM, Sparing R, Topper R. Enhancing picture naming with transcranial magnetic stimulation.  Behav Neurol. 2006;  17 177-186
  • 55 Kirschen MP, Davis-Ratner MS, Jerde TE. et al . Enhancement of phonological memory following transcranial magnetic stimulation (TMS).  Behav Neurol. 2006;  17 187-194
  • 56 Pulvermüller F, Hauk O, Nikulin VV. et al . Functional links between motor and language systems.  Eur J Neurosci. 2005;  21 793-797
  • 57 Pascual-Leone A, Gates JR, Dhuna A. Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation.  Neurology. 1991;  41 697-702
  • 58 Flöel A, Knecht S. Transkranielle Magnetstimulation in der Therapie von Schlaganfallfolgen.  Klin Neurophysiol. 2002;  33 100-105
  • 59 Wittler M, Ptok M. Transkranielle Magnetstimulation – eine neue Therapieoption bei Aphasie?.  Sprache Stimme Gehör. 2007;  31 112-117
  • 60 Gratton E, Toronov V, Wolf U. et al . Measurement of brain activity by near-infrared light.  J Biomed Opt. 2005;  10 ((011008)) 1-13
  • 61 Nishimura Y, Sugisaki K, Hattori N. et al . An event-related fNIRS investigation of Japanese word order.  Exp Brain Res. 2009;  DOI: DOI 10.1007/s00221-009-2113-x
  • 62 Minagawa-Kawai Y, Mori K, Naoi N. et al . Neural attunement processes in infants during the acquisition of a language-specific phonemic contrast.  J Neurosci. 2007;  27 315-321
  • 63 Gervain J, Macagno F, Cogoi S. et al . The neonate brain detects speech structure.  Proc Natl Acad Sci USA.. 2008;  105 14222-14227
  • 64 Hull R, Bortfeld H, Koons S. Near-infrared spectroscopy and cortical responses to speech production.  Open Neuroimag J. 2009;  3 26-30

Korrespondenzadresse

apl. Prof. Dr. Dr. H. M. Müller

AG Experimentelle Neurolinguistik

Fakultät für Linguistik und Literaturwissenschaft

Universität Bielefeld

Postfach 100131

33502 Bielefeld

Email: horst.mueller@uni-bielefeld.de

>