Aktuelle Neurologie 2010; 37(5): 219-230
DOI: 10.1055/s-0030-1248488
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Ultrahochfeld-MRT in der Neurologie

Ultra-High-Field MRI in NeurologyM.  E.  Ladd1 , 2 , D.  Timmann3 , E.  R.  Gizewski1 , 4
  • 1Erwin L. Hahn Institute for Magnetic Resonance Imaging, Universität Duisburg-Essen
  • 2Institut für Diagnostische und Interventionelle Radiologie und Neuroradiologie, Universitätsklinikum Essen
  • 3Experimentelle Neurologie, Klinik für Neurologie, Universitätsklinikum Essen
  • 4Neuroradiologie, Universitätsklinikum Gießen und Marburg, Standort Gießen
Further Information

Publication History

Publication Date:
16 June 2010 (online)

Zusammenfassung

Die Magnetresonanztomografie (MRT) ist eine der wichtigsten Methoden zur Diagnose und Therapieüberwachung bei neurologischen Erkrankungen. Heute finden Magnete bis zu 3 Tesla Feldstärke Anwendung in der klinischen Routine. Ein wesentlicher Trend der kommenden Jahre könnte die Einführung von Magneten mit noch höheren statischen Feldstärken sein, insbesondere 7 Tesla. Diese Geräte bieten das Potenzial, die räumliche Auflösung aber auch bestimmte Gewebekontraste bedeutend zu verbessern. In diesem Artikel werden die Eigenschaften – sowohl positive als auch negative – der Ultrahochfeld-Bildgebung aufgezeigt. Erste Forschungsergebnisse werden zusammengefasst, die bereits einige Vorteile des Ultrahochfeldes für die neurologische Diagnostik zeigen. Weitere Untersuchungen sind jedoch nötig, um auch eine klinische Relevanz der Vorteile zu evaluieren. Es ist zu erwarten, dass in wenigen Jahren 7-Tesla-Magnetresonanztomografen den Weg aus der Forschung in die klinische Praxis finden werden; damit wird die Bedeutung der MRT für die Neurologie nochmals gesteigert.

Abstract

Magnetic resonance imaging (MRI) is one of the most important methods for the diagnosis and therapy monitoring of neurological disease. Today, magnets up to 3 Tesla are in use in clinical routine. An important trend for the coming years could be the introduction of MRI systems with even higher static magnetic fields, in particular 7 Tesla. These imagers offer the potential to significantly enhance not only spatial resolution, but also certain tissue contrasts. In this article, the characteristics of ultra-high-field imaging – both positive and negative – are described. Initial research results are summarised which already demonstrate certain advantages of the ultra-high magnetic field for neurological diagnostics; however, further investigations are required to evaluate the clinical relevance of these advantages. It can be expected that 7-Tesla MRI scanners will find their way from the research environment into clinical practice in the next few years; thus, the significance of MRI for neurology will be once again be extended.

Literatur

  • 1 Fuchs V R, Sox Jr H C. Physicians' views of the relative importance of thirty medical innovations.  Health Aff (Millwood). 2001;  20 30-42
  • 2 European Federation of Neurological Societies Task Force . The future of magnetic resonance-based techniques in neurology.  Eur J Neurol. 2001;  8 17-25
  • 3 Weiller C, May A, Sach M. et al . Role of functional imaging in neurological disorders.  J Magn Reson Imaging. 2006;  23 840-850
  • 4 Schild H. Clinical highfield MR.  Rofo. 2005;  177 621-631
  • 5 Moseley M E, Liu C, Rodriguez S. et al . Advances in magnetic resonance neuroimaging.  Neurol Clin. 2009;  27 1-19, xiii
  • 6 Ladd M E. High-field-strength magnetic resonance: potential and limits.  Top Magn Reson Imaging. 2007;  18 139-152
  • 7 Hoult D I, Phil D. Sensitivity and power deposition in a high-field imaging experiment.  J Magn Reson Imaging. 2000;  12 46-67
  • 8 Vaughan J T, Garwood M, Collins C M. et al . 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images.  Magn Reson Med. 2001;  46 24-30
  • 9 Van de Moortele P F, Auerbach E J, Olman C. et al . T1 weighted brain images at 7 Tesla unbiased for Proton Density, T2* contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization.  Neuroimage. 2009;  46 432-446
  • 10 Leiner T, Kucharczyk W. NSF prevention in clinical practice: summary of recommendations and guidelines in the United States, Canada, and Europe.  J Magn Reson Imaging. 2009;  30 1357-1363
  • 11 Noebauer-Huhmann I, Kraff O, Juras V. et al .MR Contrast Media at 7Tesla – Preliminary Study on Relaxivities. Proceedings 16th Scientific Meeting, International Society for Magnetic Resonance in Medicine. Toronto; 2008: 1457
  • 12 Moenninghoff C, Maderwald S, Theysohn J M. et al . Imaging of adult astrocytic brain tumours with 7 T MRI: preliminary results.  Eur Radiol. 2010;  20 704-713
  • 13 Allkemper T, Heindel W, Kooijman H. et al . Effect of field strengths on magnetic resonance angiography: comparison of an ultrasmall superparamagnetic iron oxide blood-pool contrast agent and gadopentetate dimeglumine in rabbits at 1,5 and 3,0 tesla.  Invest Radiol. 2006;  41 97-104
  • 14 Srinivasan R, Ratiney H, Hammond-Rosenbluth K E. et al . MR spectroscopic imaging of glutathione in the white and gray matter at 7 T with an application to multiple sclerosis.  Magn Reson Imaging. 2010;  28 163-170
  • 15 Otazo R, Mueller B, Ugurbil K. et al . Signal-to-noise ratio and spectral linewidth improvements between 1,5 and 7 Tesla in proton echo-planar spectroscopic imaging.  Magn Reson Med. 2006;  56 1200-1210
  • 16 Cecil K M. MR spectroscopy of metabolic disorders.  Neuroimaging Clin N Am. 2006;  16 87-116, viii
  • 17 Lee J, Hirano Y, Fukunaga M. et al . On the contribution of deoxy-hemoglobin to MRI gray-white matter phase contrast at high field.  Neuroimage. 2010;  49 193-198
  • 18 Li T Q, van Gelderen P, Merkle H. et al . Extensive heterogeneity in white matter intensity in high-resolution T2*-weighted MRI of the human brain at 7,0 T.  Neuroimage. 2006;  32 1032-1040
  • 19 Brass S D, Chen N K, Mulkern R V. et al . Magnetic resonance imaging of iron deposition in neurological disorders.  Top Magn Reson Imaging. 2006;  17 31-40
  • 20 Koopmans P J, Manniesing R, Niessen W J. et al . MR venography of the human brain using susceptibility weighted imaging at very high field strength.  MAGMA. 2008;  21 149-158
  • 21 Dashner R A, Kangarlu A, Clark D L. et al . Limits of 8-Tesla magnetic resonance imaging spatial resolution of the deoxygenated cerebral microvasculature.  J Magn Reson Imaging. 2004;  19 303-307
  • 22 Van de Moortele P F, Akgun C, Adriany G. et al . B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil.  Magn Reson Med. 2005;  54 1503-1518
  • 23 Wang D, Heberlein K, LaConte S. et al . Inherent insensitivity to RF inhomogeneity in FLASH imaging.  Magn Reson Med. 2004;  52 927-931
  • 24 Theysohn J M, Maderwald S, Kraff O. et al . Subjective acceptance of 7 Tesla MRI for human imaging.  MAGMA. 2008;  21 63-72
  • 25 Heverhagen J T, Bourekas E, Sammet S. et al . Time-of-flight magnetic resonance angiography at 7 Tesla.  Invest Radiol. 2008;  43 568-573
  • 26 Kang C K, Hong S M, Han J Y. et al . Evaluation of MR angiography at 7,0 Tesla MRI using birdcage radio frequency coils with end caps.  Magn Reson Med. 2008;  60 330-338
  • 27 Cho Z H, Kang C K, Han J Y. et al . Observation of the lenticulostriate arteries in the human brain in vivo using 7,0T MR angiography.  Stroke. 2008;  39 1604-1606
  • 28 Kang C K, Park C W, Han J Y. et al . Imaging and analysis of lenticulostriate arteries using 7,0-Tesla magnetic resonance angiography.  Magn Reson Med. 2009;  61 136-144
  • 29 Maderwald S, Ladd S C, Gizewski E R. et al . To TOF or not to TOF: strategies for non-contrast-enhanced intracranial MRA at 7 T.  MAGMA. 2008;  21 159-167
  • 30 Zwanenburg J J, Hendrikse J, Takahara T. et al . MR angiography of the cerebral perforating arteries with magnetization prepared anatomical reference at 7 T: comparison with time-of-flight.  J Magn Reson Imaging. 2008;  28 1519-1526
  • 31 Monninghoff C, Maderwald S, Theysohn J M. et al . Evaluation of intracranial aneurysms with 7 T versus 1,5 T time-of-flight MR angiography – initial experience.  Rofo. 2009;  181 16-23
  • 32 Monninghoff C, Maderwald S, Wanke I. Pre-interventional assessment of a vertebrobasilar aneurysm with 7 tesla time-of-flight MR angiography.  Rofo. 2009;  181 266-268
  • 33 Schlamann M, Maderwald S, Becker W. et al . Cerebral cavernous hemangiomas at 7 Tesla: initial experience.  Acad Radiol. 2010;  17 3-6
  • 34 Meyer J S, Quach M, Thornby J. et al . MRI identifies MCI subtypes: vascular versus neurodegenerative.  J Neurol Sci. 2005;  229–230 121-129
  • 35 Werring D J, Frazer D W, Coward L J. et al . Cognitive dysfunction in patients with cerebral microbleeds on T2*-weighted gradient-echo MRI.  Brain. 2004;  127 2265-2275
  • 36 Derex L, Nighoghossian N, Hermier M. et al . Thrombolysis for ischemic stroke in patients with old microbleeds on pretreatment MRI.  Cerebrovasc Dis. 2004;  17 238-241
  • 37 Lee S H, Bae H J, Kwon S J. et al . Cerebral microbleeds are regionally associated with intracerebral hemorrhage.  Neurology. 2004;  62 72-76
  • 38 Theysohn J M, Kraff O, Maderwald S. et al . The human hippocampus at 7 T-in vivo MRI.  Hippocampus. 2009;  19 1-7
  • 39 Breyer T, Wanke I, Maderwald S. et al . Imaging of patients with hippocampal sclerosis at 7 Tesla: initial results.  Acad Radiol. 2010;  17 407-409
  • 40 Kollia K, Maderwald S, Putzki N. et al . First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: comparison of 1,5T and 7T.  AJNR Am J Neuroradiol. 2009;  30 699-702
  • 41 Metcalf M, Xu D, Okuda D T. et al . High-resolution phased-array MRI of the human brain at 7 Tesla: initial experience in multiple sclerosis patients.  J Neuroimaging. 2010;  20 141-147
  • 42 Schulz J B, Boesch S, Burk K. et al . Diagnosis and treatment of Friedreich ataxia: a European perspective.  Nat Rev Neurol. 2009;  5 222-234
  • 43 Brandauer B, Hermsdorfer J, Beck A. et al . Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy.  Clin Neurophysiol. 2008;  119 2528-2537
  • 44 Schulz J B, Borkert J, Wolf S. et al . Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6.  Neuroimage. 2010;  49 158-168
  • 45 Maderwald S, Küper M, Thürling M. et al .3D visualization of deep cerebellar nuclei using 7T MRI. Proceedings 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine. Honolulu; 2009: 963
  • 46 Berg D, Youdim M B. Role of iron in neurodegenerative disorders.  Top Magn Reson Imaging. 2006;  17 5-17
  • 47 Chavhan G B, Babyn P S, Thomas B. et al . Principles, techniques, and applications of T2*-based MR imaging and its special applications.  Radiographics. 2009;  29 1433-1449
  • 48 Waldvogel D, van Gelderen P, Hallett M. Increased iron in the dentate nucleus of patients with Friedrich's ataxia.  Ann Neurol. 1999;  46 123-125
  • 49 Boddaert N, Le Quan Sang K H, Rotig A. et al . Selective iron chelation in Friedreich ataxia: biologic and clinical implications.  Blood. 2007;  110 401-408
  • 50 Rabe K, Kraff O, Orzada S. et al . Volumetrische und relaxometrische Vermessung des Nucleus dentatus im 7T Magnetfeld bei Patienten mit einer Friedreich Ataxie.  Akt Neurol. 2009;  36 S54
  • 51 Koeppen A H, Michael S C, Knutson M D. et al . The dentate nucleus in Friedreich's ataxia: the role of iron-responsive proteins.  Acta Neuropathol. 2007;  114 163-173
  • 52 Marques J P, Maddage R, Mlynarik V. et al . On the origin of the MR image phase contrast: an in vivo MR microscopy study of the rat brain at 14,1 T.  Neuroimage. 2009;  46 345-352
  • 53 Koeppen A H. The pathogenesis of spinocerebellar ataxia.  Cerebellum. 2005;  4 62-73
  • 54 Yacoub E, Shmuel A, Pfeuffer J. et al . Imaging brain function in humans at 7 Tesla.  Magn Reson Med. 2001;  45 588-594
  • 55 Pfeuffer J, van de Moortele P F, Yacoub E. et al . Zoomed functional imaging in the human brain at 7 Tesla with simultaneous high spatial and high temporal resolution.  Neuroimage. 2002;  17 272-286
  • 56 Gizewski E R, de Greiff A, Maderwald S. et al . fMRI at 7 T: whole-brain coverage and signal advantages even infratentorially?.  Neuroimage. 2007;  37 761-768
  • 57 Speck O, Stadler J, Zaitsev M. High resolution single-shot EPI at 7T.  MAGMA. 2008;  21 73-86
  • 58 Walter M, Stadler J, Tempelmann C. et al . High resolution fMRI of subcortical regions during visual erotic stimulation at 7 T.  MAGMA. 2008;  21 103-111
  • 59 Wiesinger F, Van de Moortele P F, Adriany G. et al . Potential and feasibility of parallel MRI at high field.  NMR Biomed. 2006;  19 368-378
  • 60 Timmann D, Daum I. Cerebellar contributions to cognitive functions: a progress report after two decades of research.  Cerebellum. 2007;  6 159-162
  • 61 Strick P L, Dum R P, Fiez J A. Cerebellum and nonmotor function.  Annu Rev Neurosci. 2009;  32 413-434
  • 62 Dimitrova A, de Greiff A, Schoch B. et al . Activation of cerebellar nuclei comparing finger, foot and tongue movements as revealed by fMRI.  Brain Res Bull. 2006;  71 233-241
  • 63 Habas C. Functional imaging of the deep cerebellar nuclei: a review.  Cerebellum. 2010;  9 22-28
  • 64 Logothetis N K, Wandell B A. Interpreting the BOLD signal.  Annu Rev Physiol. 2004;  66 735-769
  • 65 Logothetis N, Merkle H, Augath M. et al . Ultra high-resolution fMRI in monkeys with implanted RF coils.  Neuron. 2002;  35 227-242
  • 66 Sultan F, Möck M, Thier P. Functional architecture of the cerebellar system. In: Klockgether T, ed Neurological Ataxia. New York; Marcel Dekker 2000: 1-52
  • 67 Kueper M, Diedrichsen J, Thuerling M. et al .Functional imaging of the deep cerebellar nuclei using 7[T MRI. Neuroscience 2009, Society for Neuroscience. Chicago; 2009 BB32 460.8
  • 68 Habas C, Guillevin R, Abanou A. In vivo structural and functional imaging of the human rubral and inferior olivary nuclei: a mini-review.  Cerebellum. 2009; 
  • 69 Kraff O, Bitz A K, Kruszona S. et al . An eight-channel phased array RF coil for spine MR imaging at 7 T.  Invest Radiol. 2009;  44 734-740
  • 70 United States Food and Drug Administration .Guidance for industry and FDA staff: criteria for significant risk investigations of magnetic resonance diagnostic devices;. 2003
  • 71 International Electrotechnical Commission .Medical electrical equipment – Part 2–33: Particular requirements for the safety of magnetic resonance equipment for medical diagnosis. IEC 60601-2-33. 2.2 ed. 2008

Prof. Dr. sc. techn. Mark E. Ladd

Erwin L. Hahn Institute for Magnetic Resonance Imaging

Arendahls Wiese 199

45141 Essen

Email: mark.ladd@uni-duisburg-essen.de

    >