J Reconstr Microsurg 2010; 26(4): 225-233
DOI: 10.1055/s-0030-1248230
© Thieme Medical Publishers

Effect of Low-Dose FK506 after Contralateral C7 Transfer to the Musculocutaneous Nerve: A Study in Rats

Petros Konofaos1 , Jessica Burns1 , Julia K. Terzis1
  • 1Microsurgical Program, Eastern Virginia Medical School (EVMS) and the International Institute of Reconstructive Microsurgery, Norfolk, Virginia
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
18. Februar 2010 (online)

ABSTRACT

The purpose of this study in rats was to identify whether a minimal dose of FK506 could enhance nerve regeneration along a 4-cm cross-chest saphenous nerve graft. Our center established a cross-chest nerve regeneration model previously using the contralateral C7 root transfer to the musculocutaneous nerve. Using this model, 10 adult male Sprague-Dawley rats were divided into two groups: group 1 (n = 5) consisted of animals that did not receive any further treatment, and group 2 (n = 5) consisted of animals that received a daily subcutaneous dose of 0.7 mg/kg FK506 for a period of 4 weeks. Evaluation methods of the study groups consisted of behavioral assessment, needle electromyography studies, and qualitative and quantitative morphometry. In the FK506 group, the middle of the graft and the musculocutaneous nerve contained larger axons and thicker myelin, bicep muscle weight recovered to an average of 68% of the normal (right) side, and overall behavioral results were better (p = 0.03175) than for untreated controls. Although the FK506 group achieved higher average myelinated fiber counts in all histologic sections, higher amplitude, and shorter latency results, there was no statistically significant difference between the two groups. Contralateral C7 transfer in the rat brachial plexus is a good experimental model to assess nerve regeneration and test treatments designed to enhance recovery in lesions with long nerve gaps (40 mm). FK506-treated animals demonstrated more advanced axonal regeneration, myelinated fiber maturation, and bicep muscle reinnervation. These results suggest a potential clinical use of low-dose FK506 in patients with severe nerve injuries.

REFERENCES

  • 1 Terzis J K, Papakonstantinou K C. The surgical treatment of brachial plexus injuries in adults.  Plast Reconstr Surg. 2000;  106 1097-1122 quiz 1123-1124
  • 2 Terzis J K, Vekris M D, Soucacos P N. Brachial plexus root avulsions.  World J Surg. 2001;  25 1049-1061
  • 3 Terzis J K, Vekris M D, Soucacos P N. Outcomes of brachial plexus reconstruction in 204 patients with devastating paralysis.  Plast Reconstr Surg. 1999;  104 1221-1240
  • 4 Chuang D CC. Neurotization procedures for brachial plexus injuries.  Hand Clin. 1995;  11 633-645
  • 5 Mackinnon S E, Novak C B. Nerve transfers. New options for reconstruction following nerve injury.  Hand Clin. 1999;  15 643-666, ix
  • 6 Terzis J K, Kostopoulos E. PSEF 2005 Scientific Essay Contest Senior Award – Clinical Research, Integra Foundation: Selective Ipsilateral and Selective Contralateral C7 in OBPP.  Plast Reconstr Surg. 2005;  116 54
  • 7 Gu Y D, Zhang G M, Chen D S, Yan J G, Cheng X M, Chen L. Seventh cervical nerve root transfer from the contralateral healthy side for treatment of brachial plexus root avulsion.  J Hand Surg Br. 1992;  17 518-521
  • 8 Gold B G, Katoh K, Storm-Dickerson T. The immunosuppressant FK506 increases the rate of axonal regeneration in rat sciatic nerve.  J Neurosci. 1995;  15 7509-7516
  • 9 Gold B G, Gordon H S, Wang M S. Efficacy of delayed or discontinuous FK506 administrations on nerve regeneration in the rat sciatic nerve crush model: lack of evidence for a conditioning lesion-like effect.  Neurosci Lett. 1999;  267 33-36
  • 10 Armitage J M, Kormos R L, Morita S et al.. Clinical trial of FK 506 immunosuppression in adult cardiac transplantation.  Ann Thorac Surg. 1992;  54 205-210 discussion 210-211
  • 11 Dumont F J, Staruch M J, Koprak S L et al.. The immunosuppressive and toxic effects of FK-506 are mechanistically related: pharmacology of a novel antagonist of FK-506 and rapamycin.  J Exp Med. 1992;  176 751-760
  • 12 Felldin M, Bäckman L, Brattström C et al.. Rescue therapy with tacrolimus (FK 506) in renal transplant recipients—a Scandinavian multicenter analysis.  Transpl Int. 1997;  10 13-18
  • 13 Yang R K, Lowe III J B, Sobol J B, Sen S K, Hunter D A, Mackinnon S E. Dose-dependent effects of FK506 on neuroregeneration in a rat model.  Plast Reconstr Surg. 2003;  112 1832-1840
  • 14 Gu Y D, Ma M K. Nerve transfer for treatment of root avulsion of the brachial plexus: experimental studies in a rat model.  J Reconstr Microsurg. 1991;  7 15-22
  • 15 Mackinnon S E, Doolabh V B, Novak C B, Trulock E P. Clinical outcome following nerve allograft transplantation.  Plast Reconstr Surg. 2001;  107 1419-1429
  • 16 Petruzzo P, Revillard J P, Kanitakis J et al.. First human double hand transplantation: efficacy of a conventional immunosuppressive protocol.  Clin Transplant. 2003;  17 455-460
  • 17 Kostopoulos E, Konofaos P, Burns J, Terzis J K. Tubulization techniques in a rat brachial plexus model for long nerve defects (40 mm): a pilot study. Submitted to Surgical Research, 2010
  • 18 Inciong J G, Marrocco W C, Terzis J K. Efficacy of intervention strategies in a brachial plexus global avulsion model in the rat.  Plast Reconstr Surg. 2000;  105 2059-2071
  • 19 Papakonstantinou K C, Shiamishis G, Bates M, Terzis J K. Distraction osteogenesis using IGF-I after nerve microreconstruction.  J Reconstr Microsurg. 2002;  18 401-410
  • 20 Kalantarian B, Rice D C, Tiangco D A, Terzis J K. Gains and losses of the XII-VII component of the “baby-sitter” procedure: a morphometric analysis.  J Reconstr Microsurg. 1998;  14 459-471
  • 21 Thanos P K, Okajima S, Terzis J K. Ultrastructure and cellular biology of nerve regeneration.  J Reconstr Microsurg. 1998;  14 423-436
  • 22 Gu Y D, Zhang G M, Chen D S et al.. Cervical nerve root transfer from contralateral normal side for treatment of brachial plexus root avulsions.  Chin Med J (Engl). 1991;  104 208-211
  • 23 Chuang D C, Wei F C, Noordhoff M S. Cross-chest C7 nerve grafting followed by free muscle transplantations for the treatment of total avulsed brachial plexus injuries: a preliminary report.  Plast Reconstr Surg. 1993;  92 717-725 discussion 726-727
  • 24 Terzis J K. Experience with selective contralateral C7 technique in fifty cases of devastating brachial plexus paralysis. Presented at the Annual Meeting of the American Society for Surgery of the Hand Nashville, TN; September 30 to October 3, 1996
  • 25 Gu Y, Xu J, Chen L, Wang H, Hu S. Long term outcome of contralateral C7 transfer: a report of 32 cases.  Chin Med J (Engl). 2002;  115 866-868
  • 26 Zhang C G, Terenghi G, Mantovani C, Wiberg M. Neuronal survival, regeneration and muscle morphology after posterior C7 nerve transfer: an experimental study.  J Plast Reconstr Aesthet Surg. 2006;  59 717-725
  • 27 Ma J, Novikov L N, Wiberg M, Kellerth J O. Delayed loss of spinal motoneurons after peripheral nerve injury in adult rats: a quantitative morphological study.  Exp Brain Res. 2001;  139 216-223
  • 28 Jensen J N, Brenner M J, Tung T H, Hunter D A, Mackinnon S E. Effect of FK506 on peripheral nerve regeneration through long grafts in inbred swine.  Ann Plast Surg. 2005;  54 420-427
  • 29 Jensen J N, Tung T H, Mackinnon S E, Brenner M J, Hunter D A. Use of anti-CD40 ligand monoclonal antibody as anti-rejection therapy in a murine peripheral nerve allograft model.  Microsurgery. 2004;  24 309-315
  • 30 Steiner J P, Hamilton G S, Ross D T et al.. Neurotrophic immunophilin ligands stimulate structural and functional recovery in neurodegenerative animal models.  Proc Natl Acad Sci U S A. 1997;  94 2019-2024
  • 31 Gordon T, Fu S Y. Long-term response to nerve injury.  Adv Neurol. 1997;  72 185-199
  • 32 Kobayashi J, Mackinnon S E, Watanabe O et al.. The effect of duration of muscle denervation on functional recovery in the rat model.  Muscle Nerve. 1997;  20 858-866
  • 33 Chen L, Gu Y D. An experimental study of contralateral C7 root transfer with vascularized nerve grafting to treat brachial plexus root avulsion.  J Hand Surg Br. 1994;  19 60-66
  • 34 Sinis N, Schaller H E, Becker S T et al.. Cross-chest median nerve transfer: a new model for the evaluation of nerve regeneration across a 40 mm gap in the rat.  J Neurosci Methods. 2006;  156 166-172
  • 35 Bertelli J A, Taleb M, Saadi A, Mira J C, Pecot-Dechavassine M. The rat brachial plexus and its terminal branches: an experimental model for the study of peripheral nerve regeneration.  Microsurgery. 1995;  16 77-85
  • 36 Bertelli J A, Mira J C. The grasping test: a simple behavioral method for objective quantitative assessment of peripheral nerve regeneration in the rat.  J Neurosci Methods. 1995;  58 151-155
  • 37 Grand A, Myckatyn T, Mackinnon S, Hunter D A. Axonal regeneration after cold preservation of nerve allografts and immunosuppression with tacrolimus in mice.  J Neurosurg. 2002;  96 926-932
  • 38 Lyons W E, George E B, Dawson T M, Steiner J P, Snyder S H. Immunosuppressant FK506 promotes neurite outgrowth in cultures of PC12 cells and sensory ganglia.  Proc Natl Acad Sci U S A. 1994;  91 3191-3195
  • 39 Tanaka K, Fujita N, Higashi Y, Ogawa N. Neuroprotective and antioxidant properties of FKBP-binding immunophilin ligands are independent on the FKBP12 pathway in human cells.  Neurosci Lett. 2002;  330 147-150
  • 40 Gold B G, Densmore V, Shou W, Matzuk M M, Gordon H S. Immunophilin FK506-binding protein 52 (not FK506-binding protein 12) mediates the neurotrophic action of FK506.  J Pharmacol Exp Ther. 1999;  289 1202-1210
  • 41 Owens-Grillo J K, Hoffmann K, Hutchison K A et al.. The cyclosporin A-binding immunophilin CyP-40 and the FK506-binding immunophilin hsp56 bind to a common site on hsp90 and exist in independent cytosolic heterocomplexes with the untransformed glucocorticoid receptor.  J Biol Chem. 1995;  270 20479-20484
  • 42 Czar M J, Owens-Grillo J K, Yem A W et al.. The hsp56 immunophilin component of untransformed steroid receptor complexes is localized both to microtubules in the cytoplasm and to the same nonrandom regions within the nucleus as the steroid receptor.  Mol Endocrinol. 1994;  8 1731-1741
  • 43 Kralli A, Yamamoto K R. An FK506-sensitive transporter selectively decreases intracellular levels and potency of steroid hormones.  J Biol Chem. 1996;  271 17152-17156
  • 44 Benowitz L I, Routtenberg A. GAP-43: an intrinsic determinant of neuronal development and plasticity.  Trends Neurosci. 1997;  20 84-91
  • 45 Udina E, Ceballos D, Gold B G, Navarro X. FK506 enhances reinnervation by regeneration and by collateral sprouting of peripheral nerve fibers.  Exp Neurol. 2003;  183 220-231
  • 46 Udina E, Ceballos D, Verdú E, Gold B G, Navarro X. Bimodal dose-dependence of FK506 on the rate of axonal regeneration in mouse peripheral nerve.  Muscle Nerve. 2002;  26 348-355
  • 47 Sobol J B, Lowe III J B, Yang R K, Sen S K, Hunter D A, Mackinnon S E. Effects of delaying FK506 administration on neuroregeneration in a rodent model.  J Reconstr Microsurg. 2003;  19 113-118
  • 48 Brenner M J, Fox I K, Kawamura D H et al.. Delayed nerve repair is associated with diminished neuroenhancement by FK506.  Laryngoscope. 2004;  114 570-576
  • 49 Wang M S, Zeleny-Pooley M, Gold B G. Comparative dose-dependence study of FK506 and cyclosporin A on the rate of axonal regeneration in the rat sciatic nerve.  J Pharmacol Exp Ther. 1997;  282 1084-1093
  • 50 Fansa H, Keilhoff G, Altmann S, Plogmeier K, Wolf G, Schneider W. The effect of the immunosuppressant FK506 on peripheral nerve regeneration following nerve grafting.  J Hand Surg Br. 1999;  24 38-42
  • 51 Chunasuwankul R, Ayrout C, Dereli Z, Gal A, Lanzetta M, Owen E. Low dose discontinued FK506 treatment enhances peripheral nerve regeneration.  Int Surg. 2002;  87 274-278

Julia K TerzisM.D. Ph.D. 

Department of Surgery, Division of Plastic and Reconstructive Surgery, Eastern Virginia Medical School (EVMS)

700 Olney Road, LH 2055, Norfolk, VA 23501

eMail: mrc@jkterzis.com

    >