Klin Monbl Augenheilkd 2010; 227(2): 99-107
DOI: 10.1055/s-0029-1245171
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Oxidativer Stress im Trabekelwerk beim POWG

Oxidative Stress in the Trabecular Meshwork of POAGU. Welge-Lüßen1 , K. Birke1
  • 1Augenklinik, Universität Erlangen-Nürnberg
Further Information

Publication History

Eingegangen: 15.1.2010

Angenommen: 25.1.2010

Publication Date:
12 February 2010 (online)

Zusammenfassung

Das primäre Offenwinkelglaukom (POWG) wird als eine Optikusneuropathie definiert, bei der es zu einem Verlust von Axonen des Nervus opticus und der dazugehörigen Ganglienzellen kommt. Die Ursache dieser Schädigung ist bis heute nicht geklärt. In der Pathogenese und Progression des POWG werden verschiedene Faktoren wie ein erhöhter intraokulärer Druck und eine verminderte okuläre Durchblutung verantwortlich gemacht. Aus morphologischen Untersuchungen ist bekannt, dass die Druckerhöhung beim POWG auf einer Erhöhung des Abflusswiderstandes im Bereich des Trabekelwerkes beruht. Das Trabekelwerk (TW) des POWG-Patienten zeichnet sich unter anderem durch folgende spezifische morphologische und biochemische Veränderungen aus: Akkumulation von extrazellulärer Matrix, beschleunigte Alterung, Apoptose, subklinische chronische Entzündungen und Veränderungen im Zytoskelett. Die Ursache und die Vorgänge, die zu diesen Veränderungen führen, sind bis heute nicht geklärt. In der Pathogenese des POWG wird zunehmend oxidativer Stress diskutiert. Wissenschaftliche Untersuchungen deuten darauf hin, dass im TW von POWG-Patienten ein vermehrter oxidativer Stress vorliegt. Die Behandlung von kultivierten TW-Zellen führt zu den genannten glaukomtypischen Veränderungen. Durch die Vorbehandlung mit Antioxidantien aber auch mit Wirkstoffen von modernen Antiglaukomatosa können diese glaukomtypischen Veränderungen in TW reduziert werden. Zusammenfassend können in vitro POWG-typische Veränderungen im TW durch oxidativen Stress induziert werden. Somit könnte eine Reduktion des oxidativen Stresses im TW ein wirkungsvoller Ansatz sein, die Progression des POWG zu reduzieren.

Abstract

Primary open angle glaucoma (POAG) is defined as an optic neuropathy which is characterised by the loss of optic nerve axons and the related retinal ganglion cells. The reason for these changes is still unknown. In the pathogenesis of POAG several factors like increased intraocular pressure and a reduction of ocular blood supply are discussed. Morphological and biochemical analyses of the trabecular meshwork (TM) of POAG patients revealed loss of cells, increased accumulation of extracellular matrix (ECM), changes in the cytoskeleton, cellular senescence and the process of subclinical inflammation. One factor becoming more likely to be involved in the pathogenesis of POAG is oxidative stress. Treatment of TM cells with oxidative stress induced POAG-typical changes like ECM accumulation, cell death, disarrangement of the cytoskeleton, advanced senescence and the release of inflammatory markers. By pretreatment with antioxidants, prostaglandin analogues, beta-blockers or local carbonic anhydrase inhibitors, these effects were markedly reduced. In conclusion, oxidative stress is able to induce characteristic glaucomatous TM changes in vitro and these oxidative stress-induced TM changes can be minimised by the use of antioxidants and IOP-lowering substances. It is tempting to speculate that prevention of oxidative stress exposure to the TM may help to reduce the progression of POAG.

Literatur

  • 1 Berisha F, Schmetterer K, Vass C. et al . Effect of trabeculectomy on ocular blood flow.  Br J Ophthalmol. 2005;  89 185-188
  • 2 Grieshaber M C, Flammer J. Blood flow in glaucoma.  Curr Opin Ophthalmol. 2005;  16 79-83
  • 3 Harju M, Vesti E. Blood flow of the optic nerve head and peripapillary retina in exfoliation syndrome with unilateral glaucoma or ocular hypertension.  Graefes Arch Clin Exp Ophthalmol. 2001;  239 271-277
  • 4 Liton P B, Challa P, Stinnett S. et al . Cellular senescence in the glaucomatous outflow pathway.  Exp Gerontol. 2005;  40 745-748
  • 5 Lutjen-Drecoll E. Morphological changes in glaucomatous eyes and the role of TGFbeta2 for the pathogenesis of the disease.  Exp Eye Res. 2005;  81 1-4
  • 6 Sacca S C, Bolognesi C, Battistella A. et al . Gene-environment interactions in ocular diseases.  Mutat Res. 2009;  667 98-117
  • 7 Klein B E, Klein R, Linton K L. Intraocular pressure in an American community. The Beaver Dam Eye Study.  Invest Ophthalmol Vis Sci. 1992;  33 2224-2228
  • 8 Leske M C, Connell A M, Wu S Y. et al . Distribution of intraocular pressure. The Barbados Eye Study.  Arch Ophthalmol. 1997;  115 1051-1057
  • 9 Tielsch J M, Sommer A, Katz J. et al . Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey.  JAMA. 1991;  266 369-374
  • 10 Weih L M, Mukesh B N, McCarty C A. et al . Association of demographic, familial, medical, and ocular factors with intraocular pressure.  Arch Ophthalmol. 2001;  119 875-880
  • 11 Wu S Y, Leske M C. Associations with intraocular pressure in the Barbados Eye Study.  Arch Ophthalmol. 1997;  115 1572-1576
  • 12 Harman D. Aging: a theory based on free radical and radiation chemistry.  J Gerontol. 1956;  11 298-300
  • 13 Toussaint O, Medrano E E, Zglinicki von T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes.  Exp Gerontol. 2000;  35 927-945
  • 14 Hayflick L, Moorhead P S. The serial cultivation of human diploid cell strains.  Exp Cell Res. 1961;  25 585-621
  • 15 Toussaint O, Remacle J, Dierick J F. et al . From the Hayflick mosaic to the mosaics of ageing. Role of stress-induced premature senescence in human ageing.  Int J Biochem Cell Biol. 2002;  34 1415-1429
  • 16 Chen J, Goligorsky M S. Premature senescence of endothelial cells: Methusaleh’s dilemma.  Am J Physiol Heart Circ Physiol. 2006;  290 H1729-1739
  • 17 Dumont P, Burton M, Chen Q M. et al . Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast.  Free Radic Biol Med. 2000;  28 361-373
  • 18 Terman A, Brunk U T. Oxidative stress, accumulation of biological „garbage”, and aging.  Antioxid Redox Signal. 2006;  8 197-204
  • 19 Ding G, Franki N, Kapasi A A. et al . Tubular cell senescence and expression of TGF-beta1 and p21(WAF1 /CIP1) in tubulointerstitial fibrosis of aging rats.  Exp Mol Pathol. 2001;  70 43-53
  • 20 Martin J A, Buckwalter J A. The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair.  J Bone Joint Surg Am. 2003;  85-A (Suppl 2) 106-110
  • 21 Wiemann S U, Satyanarayana A, Tsahuridu M. et al . Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis.  FASEB J. 2002;  16 935-942
  • 22 Feher J, Kovacs I, Artico M. et al . Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration.  Neurobiol Aging. 2006;  27 983-993
  • 23 Roth F, Bindewald A, Holz F G. Keypathophysiologic pathways in age-related macular disease.  Graefes Arch Clin Exp Ophthalmol. 2004;  242 710-716
  • 24 Zarbin M A. Current concepts in the pathogenesis of age-related macular degeneration.  Arch Ophthalmol. 2004;  122 598-614
  • 25 Tezel G, Luo C, Yang X. Accelerated aging in glaucoma: immunohistochemical assessment of advanced glycation end products in the human retina and optic nerve head.  Invest Ophthalmol Vis Sci. 2007;  48 1201-1211
  • 26 Wolfs R C, Klaver C C, Ramrattan R S. et al . Genetic risk of primary open-angle glaucoma. Population-based familial aggregation study.  Arch Ophthalmol. 1998;  116 1640-1645
  • 27 Fingert J H, Heon E, Liebmann J M. et al . Analysis of myocilin mutations in 1703 glaucoma patients from five different populations.  Hum Mol Genet. 1999;  8 899-905
  • 28 Adam M F, Belmouden A, Binisti P. et al . Recurrent mutations in a single exon encoding the evolutionarily conserved olfactomedin-homology domain of TIGR in familial open-angle glaucoma.  Hum Mol Genet. 1997;  6 2091-2097
  • 29 O’Brien E T, Ren X, Wang Y. Localization of myocilin to the golgi apparatus in Schlemm’s canal cells.  Invest Ophthalmol Vis Sci. 2000;  41 3842-3849
  • 30 Ueda J, Wentz-Hunter K K, Cheng E L. et al . Ultrastructural localization of myocilin in human trabecular meshwork cells and tissues.  J Histochem Cytochem. 2000;  48 1321-1330
  • 31 Fingert J H, Stone E M, Sheffield V C. et al . Myocilin glaucoma.  Surv Ophthalmol. 2002;  47 547-561
  • 32 Liu Y, Vollrath D. Reversal of mutant myocilin non-secretion and cell killing: implications for glaucoma.  Hum Mol Genet. 2004;  13 1193-1204
  • 33 He Y, Leung K W, Zhuo Y H. et al . Pro370Leu mutant myocilin impairs mitochondrial functions in human trabecular meshwork cells.  Mol Vis. 2009;  15 815-825
  • 34 Izzotti A, Sacca S C, Cartiglia C. et al . Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients.  Am J Med. 2003;  114 638-646
  • 35 Oz O, Aras Ates N, Tamer L. et al . Glutathione S-transferase M 1, T 1, and P 1 gene polymorphism in exudative age-related macular degeneration: a preliminary report.  Eur J Ophthalmol. 2006;  16 105-110
  • 36 Sekine Y, Hommura S, Harada S. Frequency of glutathione-S-transferase 1 gene deletion and its possible correlation with cataract formation.  Exp Eye Res. 1995;  60 159-163
  • 37 Hayes J D, Flanagan J U, Jowsey I R. Glutathione transferases.  Annu Rev Pharmacol Toxicol. 2005;  45 51-88
  • 38 Galambos P, Vafiadis J, Vilchez S E. et al . Compromised autoregulatory control of ocular hemodynamics in glaucoma patients after postural change.  Ophthalmology. 2006;  113 1832-1836
  • 39 Haggendal E, Nilsson N J, Norback B. Aspects of the autoregulation of cerebral blood flow.  Int Anesthesiol Clin. 1969;  7 353-367
  • 40 Harris A, Ciulla T A, Chung H S. et al . Regulation of retinal and optic nerve blood flow.  Arch Ophthalmol. 1998;  116 1491-1495
  • 41 Ehrlich R, Kheradiya N S, Winston D M. et al . Age-related ocular vascular changes.  Graefes Arch Clin Exp Ophthalmol. 2009;  247 583-591
  • 42 Moore D, Harris A, Wudunn D. et al . Dysfunctional regulation of ocular blood flow: A risk factor for glaucoma?.  Clin Ophthalmol. 2008;  2 849-861
  • 43 Izzotti A, Bagnis A, Sacca S C. The role of oxidative stress in glaucoma.  Mutat Res. 2006;  612 105-114
  • 44 Li C, Jackson R M. Reactive species mechanisms of cellular hypoxia-reoxygenation injury.  Am J Physiol Cell Physiol. 2002;  282 C227-C241
  • 45 Proell V, Carmona-Cuenca I, Murillo M M. et al . TGF-beta dependent regulation of oxygen radicals during transdifferentiation of activated hepatic stellate cells to myofibroblastoid cells.  Comp Hepatol. 2007;  6 1
  • 46 Abu-Amero K K, Morales J, Bosley T M. Mitochondrial abnormalities in patients with primary open-angle glaucoma.  Invest Ophthalmol Vis Sci. 2006;  47 2533-2541
  • 47 Sacca S C, Pascotto A, Camicione P. et al . Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma.  Arch Ophthalmol. 2005;  123 458-463
  • 48 Ferreira S M, Lerner S F, Brunzini R. et al . Oxidative stress markers in aqueous humor of glaucoma patients.  Am J Ophthalmol. 2004;  137 62-69
  • 49 He Y, Leung K W, Zhang Y H. et al . Mitochondrial complex I defect induces ROS release and degeneration in trabecular meshwork cells of POAG patients: protection by antioxidants.  Invest Ophthalmol Vis Sci. 2008;  49 1447-1458
  • 50 Balansky R M, Izzotti A, D’Agostini F. et al . Systemic genotoxic effects produced by light, and synergism with cigarette smoke in the respiratory tract of hairless mice.  Carcinogenesis. 2003;  24 1525-1532
  • 51 Wei H, Ca Q, Rahn R. et al . DNA structural integrity and base composition affect ultraviolet light-induced oxidative DNA damage.  Biochemistry. 1998;  37 6485-6490
  • 52 Nakabayashi M. Review of the ischemia hypothesis for ocular hypertension other than congenital glaucoma and closed-angle glaucoma.  Ophthalmologica. 2004;  218 344-349
  • 53 Globus M Y, Busto R, Lin B. et al . Detection of free radical activity during transient global ischemia and recirculation: effects of intraischemic brain temperature modulation.  J Neurochem. 1995;  65 1250-1256
  • 54 Saugstad O D. Mechanisms of tissue injury by oxygen radicals: implications for neonatal disease.  Acta Paediatr. 1996;  85 1-4
  • 55 Matsuda S, Gomi F, Katayama T. et al . Induction of connective tissue growth factor in retinal pigment epithelium cells by oxidative stress.  Jpn J Ophthalmol. 2006;  50 229-234
  • 56 Zhang X, Li J, Sejas D P. et al . Hypoxia-reoxygenation induces premature senescence in FA bone marrow hematopoietic cells.  Blood. 2005;  106 75-85
  • 57 Azhar G, Liu L, Zhang X. et al . Influence of age on hypoxia/reoxygenation-induced DNA fragmentation and bcl-2, bcl-xl, bax and fas in the rat heart and brain.  Mech Ageing Dev. 1999;  112 5-25
  • 58 Ben-Yosef Y, Lahat N, Shapiro S. et al . Regulation of endothelial matrix metalloproteinase-2 by hypoxia/reoxygenation.  Circ Res. 2002;  90 784-791
  • 59 Torii H, Kubota H, Ishihara H. et al . Cilostazol inhibits the redistribution of the actin cytoskeleton and junctional proteins on the blood-brain barrier under hypoxia/reoxygenation.  Pharmacol Res. 2007;  55 104-110
  • 60 Alge C S, Priglinger S G, Neubauer A S. et al . Retinal pigment epithelium is protected against apoptosis by alphaB-crystallin.  Invest Ophthalmol Vis Sci. 2002;  43 3575-3582
  • 61 Cumurcu T, Bulut Y, Demir H D. et al . Aqueous humor erythropoietin levels in patients with primary open-angle glaucoma.  J Glaucoma. 2007;  16 645-648
  • 62 Noecker R. Effects of common ophthalmic preservatives on ocular health.  Adv Ther. 2001;  18 205-215
  • 63 Debbasch C, Brignole F, Pisella P J. et al . Quaternary ammoniums and other preservatives’ contribution in oxidative stress and apoptosis on Chang conjunctival cells.  Invest Ophthalmol Vis Sci. 2001;  42 642-652
  • 64 Guenoun J M, Baudouin C, Rat P. et al . In vitro study of inflammatory potential and toxicity profile of latanoprost, travoprost, and bimatoprost in conjunctiva-derived epithelial cells.  Invest Ophthalmol Vis Sci. 2005;  46 2444-2450
  • 65 Temple M D, Perrone G G, Dawes I W. Complex cellular responses to reactive oxygen species.  Trends Cell Biol. 2005;  15 319-326
  • 66 Fuchshofer R, Yu A L, Teng H H. et al . Hypoxia/reoxygenation induces CTGF and PAI-1 in cultured human retinal pigment epithelium cells.  Exp Eye Res. 2009;  88 889-899
  • 67 Madigan M C, Penfold P L, Provis J M. et al . Intermediate filament expression in human retinal macroglia. Histopathologic changes associated with age-related macular degeneration.  Retina. 1994;  14 65-74
  • 68 Rauhut D, Rohen J W. Electron Microscopic study of the trabecular meshwork in alphachymotrypsin glaucoma.  Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1972;  184 29-41
  • 69 Babizhayev M A, Brodskaya M W. Fibronectin detection in drainage outflow system of human eyes in ageing and progression of open-angle glaucoma.  Mech Ageing Dev. 1989;  47 145-157
  • 70 Trabecular extracellular matrix regulation. Acott TS Baltimore; Wiliams & Wilkins 1992: 125-157
  • 71 Welge-Lussen U, Eichhorn M, Bloemendal H. et al . Classification of human scleral spur cells in monolayer culture.  Eur J Cell Biol. 1998;  75 78-84
  • 72 Yu A L, Fuchshofer R, Kampik A. et al . Effects of oxidative stress in trabecular meshwork cells are reduced by prostaglandin analogues.  Invest Ophthalmol Vis Sci. 2008;  49 4872-4880
  • 73 Liton P B, Gonzalez P, Epstein D L. The role of proteolytic cellular systems in trabecular meshwork homeostasis.  Exp Eye Res. 2009;  88 724-728
  • 74 Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals.  Ophthalmology. 1984;  91 564-579
  • 75 Tan J C, Peters D M, Kaufman P L. Recent developments in understanding the pathophysiology of elevated intraocular pressure.  Curr Opin Ophthalmol. 2006;  17 168-174
  • 76 Gardel M L, Shin J H, MacKintosh F C. et al . Scaling of F-actin network rheology to probe single filament elasticity and dynamics.  Phys Rev Lett. 2004;  93 188102
  • 77 Dalle-Donne I, Rossi R, Giustarini D. et al . Actin carbonylation: from a simple marker of protein oxidation to relevant signs of severe functional impairment.  Free Radic Biol Med. 2001;  31 1075-1083
  • 78 Zhu J, Zhou K, Hao J J. et al . Regulation of cortactin/dynamin interaction by actin polymerization during the fission of clathrin-coated pits.  J Cell Sci. 2005;  118 807-817
  • 79 Xu H, Chen M, Forrester J V. Para-inflammation in the aging retina.  Prog Retin Eye Res. 2009;  28 348-368
  • 80 Li G, Luna C, Liton P B. et al . Sustained stress response after oxidative stress in trabecular meshwork cells.  Mol Vis. 2007;  13 2282-2288
  • 81 Liton P B, Luna C, Challa P. et al . Genome-wide expression profile of human trabecular meshwork cultured cells, nonglaucomatous and primary open angle glaucoma tissue.  Mol Vis. 2006;  12 774-790
  • 82 Wang N, Chintala S K, Fini M E. et al . Activation of a tissue-specific stress response in the aqueous outflow pathway of the eye defines the glaucoma disease phenotype.  Nat Med. 2001;  7 304-309
  • 83 Caballero M, Liton P B, Epstein D L. et al . Proteasome inhibition by chronic oxidative stress in human trabecular meshwork cells.  Biochem Biophys Res Commun. 2003;  308 346-352
  • 84 Costarides A P, Riley M V, Green K. Roles of catalase and the glutathione redox cycle in the regulation of anterior-chamber hydrogen peroxide.  Ophthalmic Res. 1991;  23 284-294
  • 85 Riley M V. Physiologic neutralization mechanisms and the response of the corneal endothelium to hydrogen peroxide.  CLAO J. 1990;  16 S16-21, discussion S 21 – S12
  • 86 Sacca S C, Izzotti A, Rossi P. et al . Glaucomatous outflow pathway and oxidative stress.  Exp Eye Res. 2007;  84 389-399
  • 87 Chow C K, Ibrahim W, Wei Z. et al . Vitamin E regulates mitochondrial hydrogen peroxide generation.  Free Radic Biol Med. 1999;  27 580-587
  • 88 Giblin F J, McCready J P, Kodama T. et al . A direct correlation between the levels of ascorbic acid and H2O2 in aqueous humor.  Exp Eye Res. 1984;  38 87-93
  • 89 Ringvold A, Anderssen E, Kjonniksen I. Distribution of ascorbate in the anterior bovine eye.  Invest Ophthalmol Vis Sci. 2000;  41 20-23
  • 90 Kang J H, Pasquale L R, Willett W. et al . Antioxidant intake and primary open-angle glaucoma: a prospective study.  Am J Epidemiol. 2003;  158 337-346
  • 91 Varma S D. Scientific basis for medical therapy of cataracts by antioxidants.  Am J Clin Nutr. 1991;  53 335S-345S
  • 92 Augustin W, Wiswedel I, Noack H. et al . Role of endogenous and exogenous antioxidants in the defence against functional damage and lipid peroxidation in rat liver mitochondria.  Mol Cell Biochem. 1997;  174 199-205
  • 93 Hamard P, Blondin C, Debbasch C. et al . In vitro effects of preserved and unpreserved antiglaucoma drugs on apoptotic marker expression by human trabecular cells.  Graefes Arch Clin Exp Ophthalmol. 2003;  241 1037-1043
  • 94 Kim E J, Kwon K J, Park J Y. et al . Neuroprotective effects of prostaglandin E 2 or cAMP against microglial and neuronal free radical mediated toxicity associated with inflammation.  J Neurosci Res. 2002;  70 97-107
  • 95 Towndrow K M, Jia Z, Lo H H. et al . 11-Deoxy,16,16-dimethyl prostaglandin E 2 induces specific proteins in association with its ability to protect against oxidative stress.  Chem Res Toxicol. 2003;  16 312-319
  • 96 Towndrow K M, Mertens J J, Jeong J K. et al . Stress- and growth-related gene expression are independent of chemical-induced prostaglandin E(2) synthesis in renal epithelial cells.  Chem Res Toxicol. 2000;  13 111-117
  • 97 Thieme H, Schimmat C, Munzer G. et al . Endothelin antagonism: effects of FP receptor agonists prostaglandin F 2alpha and fluprostenol on trabecular meshwork contractility.  Invest Ophthalmol Vis Sci. 2006;  47 938-945
  • 98 Miyamoto N, Izumi H, Miyamoto R. et al . Nipradilol and timolol induce Foxo3a and peroxiredoxin 2 expression and protect trabecular meshwork cells from oxidative stress.  Invest Ophthalmol Vis Sci. 2009;  50 2777-2784
  • 99 Kinshuck D. Glauline (metipranolol) induced uveitis and increase in intraocular pressure.  Br J Ophthalmol. 1991;  75 575
  • 100 Zanon-Moreno V, Garcia-Medina J J, Gallego-Pinazo R. et al . Antioxidant status modifications by topical administration of dorzolamide in primary open-angle glaucoma.  Eur J Ophthalmol. 2009;  19 565-571
  • 101 Coleman A L, Stone K L, Kodjebacheva G. et al . Glaucoma risk and the consumption of fruits and vegetables among older women in the study of osteoporotic fractures.  Am J Ophthalmol. 2008;  145 1081-1089
  • 102 Luna C, Li G, Liton P B. et al . Resveratrol prevents the expression of glaucoma markers induced by chronic oxidative stress in trabecular meshwork cells.  Food Chem Toxicol. 2009;  47 198-204

Prof. Dr. Ulrich Welge-Lüßen

Universität Erlangen-Nürnberg, Augenklinik

Schwabachanlage 6

91054 Erlangen

Phone: ++ 49/91 31/8 54 47 31

Fax: ++ 49/91 31/8 53 46 30

Email: ulrich.welge@uk-erlangen.de

    >