Aktuelle Neurologie 2009; 36(5): 261-265
DOI: 10.1055/s-0029-1220349
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Therapie hereditärer metabolischer Myopathien

Treatment of Hereditary Metabolic MyopathiesM.  Deschauer1
  • 1Klinik und Poliklinik für Neurologie, Martin-Luther-Universität Halle-Wittenberg
Further Information

Publication History

Publication Date:
08 June 2009 (online)

Zusammenfassung

Hereditäre metabolische Myopathien sind durch Enzymdefekte im Energiestoffwechsel des Muskels bedingt. Dabei unterscheidet man Glykogenosen, Lipidmyopathien und mitochondriale Myopathien (= Atmungskettendefekte). Eine Enzymersatztherapie steht für den Alpha-Glukosidase-Mangel (Pompe-Erkrankung) zur Verfügung. Diese ist bei der schweren infantilen Form wirksamer als bei der milderen late-onset-Form. Wenige andere metabolische Myopathien können durch Substitution von Vitaminen / Kofaktoren wirksam behandelt werden (z. B. multipler Acyl-CoA-Dehydrogenase-Mangel oder Coenzym Q-Mangel). Für die Mehrzahl der metabolischen Myopathien gibt es aber nur symptomatische Therapieoptionen, die zur Verminderung der Belastungsintoleranz und zur Vermeidung von Rhabdomyolyseattacken beitragen können. Dazu gehören diätetische Empfehlungen.

Abstract

Hereditary metabolic myopathies are caused by a shortage of energy production in muscle due to enzyme defects in glycogen / glucose metabolism, lipid metabolism or the respiratory chain. Enzyme replacement therapy is available for alpha-glucosidase deficiency (Pompe disease). This treatment is more effective in classical severe infantile Pompe disease than in late-onset alpha-glucosidase deficiency. A few other metabolic myopathies can be treated successfully with supplementation of vitamins / cofactors (e. g., multiple acyl-CoA dehydrogenase deficiency or coenzyme Q deficiency). For the majority of metabolic myopathies, however, there are only symptomatic treatment options that can contribute to decrease exercise intolerance or to avoid attacks of rhabdomyolysis. These options include dietary regimes.

Literatur

  • 1 Joshi P R. et al . Molecular genetic characterization of German patients with late-onset glycogen storage disease type II.  J Inherit Metab Disord. 2008, online 10.7.2009; 
  • 2 Schoser B GH. Glykogenspeichererkrankung Typ 2 – Morbus Pompe: Neue pathophysiologische Aspekte und aktueller Stand der Enzymersatztherapie mit Alglucosidase-alfa.  Akt Neurol. 2007;  34 283-290
  • 3 Laforet P, Clemens P R, Corzo D. et al . Safety and efficacy results from a randomized, double-blind, placebo-controlled study of alglucosidase alfa for the treatment of Pompe disease in juveniles and adults.  Neuromuscul Disord. 2008;  18 832-833
  • 4 Deschauer M, Morgenroth A, Joshi P R. et al . Analysis of spectrum and frequencies of mutations in McArdle disease: Identification of 13 novel mutations.  J Neurol. 2007;  254 797-802
  • 5 Quinlivan R, Beynon R J, Martinuzzi A. Pharmacological and nutritional treatment for McArdle disease (glycogen storage disease type V).  Cochrane Database Syst Rev. 2008;  2 , CD003458
  • 6 Lucia A, Nogales-Gadea G, Perez M. et al . McArdle disease: what do neurologist need to know.  Nature Clin Pract. 2008;  10 568-577
  • 7 DiMauro S. Muscle glycogenoses: an overview.  Acta Myologica. 2007;  26 35-41
  • 8 DiMauro S, Gurgel-Giannetti J. The expanding phenotype of mitochondrial myopathy.  Curr Opin Neurol. 2005;  18 538-542
  • 9 DiMauro S, Quinzii C M, Hirano M. Mutations in coenzyme Q10 biosynthetic genes.  J Clin Invest. 2007;  117 587-589
  • 10 Taylor R W, Schaefer A M, Barron M J. et al . The diagnosis of mitochondrial muscle disease.  Neuromuscul Disord. 2004;  14 237-245
  • 11 Chinnery P F, Majamaa K, Turnbull D M, Thornburn D. Treatment for mitochondrial disorders.  Cochrane Review. 2006;  , CD004426
  • 12 Jeppesen T D, Schwartz M, Olsen D B. et al . Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy.  Brain. 2006;  129 3402-3412
  • 13 Taivassalo T, Gardner J L, Taylor R W. et al . Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions.  Brain. 2006;  129 3391-3401
  • 14 Murphy J L, Blakely E L, Schaefer A M. et al . Resistance training in patients with single, large-scale deletions of mitochondrial DNA.  Brain. 2008;  131 2832-2840
  • 15 Chinnery P F, Bindoff L A. 116th ENMC international workshop: the treatment of mitochondrial disorders, 14th–16th March 2003, Naarden, The Netherlands.  Neuromuscul Disord. 2003;  13 757-764
  • 16 Deschauer M, Zierz S. Chronic progressive external ophthalmoplegia – a common manifestation of mitochondrial disorders. In: Lorenz B, Borruat FX, eds Essentials in Ophthalmology: Pediatric Ophthalmology, Neuro-Ophthalmology, Genetics. Berlin, Heidelberg; Springer 2007: 267-282
  • 17 Zierz S, Engel A G. Regulatory properties of a mutant carnitine palmitoyltransferase in human skeletal muscle.  Eur J Biochem. 1985;  149 207-214
  • 18 Deschauer M, Wieser T, Zierz S. Muscle carnitine palmitoyltransferase II deficiency: Clinical and molecular genetic features and diagnostic aspects.  Arch Neurol. 2005;  62 37-41
  • 19 Orngreen M C, Ejstrup R, Vissing J. Effect of diet on exercise intolerance in carnitine palmitoyltransferase II deficiency.  Neurology. 2003;  61 559-561
  • 20 Bonnefont J P, Bastin J, Behin A, Djouadi F. Bezafibrate for an inborn mitochondrial beta-oxidation defect.  N Engl J Med. 2009;  360 838-840
  • 21 Gempel K, Topaloglu H, Talim B. et al . The myopathic form of coenzymeQ10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene.  Brain. 2007;  130 2037-2044
  • 22 Beresford M W, Pourfarzam M, Turnbull D M. et al . So doctor, what exactly is wrong with my muscles? Glutaric aciduria type II presenting in a teenager.  Neuromuscul Disord. 2006;  16 269-273
  • 23 Orngreen M C, Norgaard M G, van Engelen B G. et al . Effects of IV glucose and oral medium-chain triglyceride in patients with VLCAD deficiency.  Neurology. 2007;  69 313-315
  • 24 Bruno C, DiMauro S. Lipid storage myopathies.  Curr Opin Neurol. 2008;  21 601-606
  • 25 Hanisch F, Joshi P, Zierz S. AMP deaminase deficiency in skeletal muscle is unlikely to be of clinical relevance.  J Neurol. 2008;  255 318-322
  • 26 Lecky B R. Failure of D-ribose in myoadenylate deaminase deficiency.  Lancet. 1983;  22 193
  • 27 Patten B M. Beneficial effect of D-ribose in patient with myoadenylate deaminase deficiency.  Lancet. 1982;  8 1071
  • 28 Lindner A, Zierz S. Rhabdomyolyse und Myoglobinurie.  Nervenarzt. 2003;  74 505-515

Priv.-Doz. Dr. med. Marcus Deschauer

Klinik und Poliklinik für Neurologie, Martin-Luther-Universität Halle-Wittenberg

Ernst-Grube-Str. 40

06097 Halle / Saale

Email: marcus.deschauer@medizin.uni-halle.de

    >