Synthesis 2010(11): 1822-1836  
DOI: 10.1055/s-0029-1218789
SPECIALTOPIC
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Fluoroolefins via Julia-Kocienski Olefination

Barbara Zajc*, Rakesh Kumar
Department of Chemistry, The City College and The City University of New York, 160 Convent Avenue, New York, NY 10031, USA
Fax: +1(212)6506107; e-Mail: barbaraz@sci.ccny.cuny.edu;
Further Information

Publication History

Received 23 March 2010
Publication Date:
18 May 2010 (eFirst)

Abstract

The Julia-Kocienski olefination provides a versatile platform for the synthesis of fluorovinyl compounds. This review describes our efforts as well as those of others in the synthesis of various fluorinated aryl and heteroaryl sulfones and their utility as olefination reagents for the modular assembly of fluoroalkenes. Where data is available, the influence of the fluorine atom on the reactivity of the olefination reagents and the stereochemical outcome of the olefination are described.

1 Introduction

2 Synthesis of Fluorostilbene-like and Fluorostyrene-like Derivatives

3 Synthesis of Fluoroalkylidenes

3.1 Benzothiazole-Based Reagents

3.2 Phenyltetrazole-Based Reagents

4 Synthesis of Functionalized Fluoroolefins

4.1 α-Fluoroacrylates

4.1.1 Benzothiazole- and Phenyltetrazole-Based Reagents

4.1.2 Bis(trifluoromethyl)phenyl-Based Reagents

4.2 α-Fluoroacrylonitriles

4.3 α-Fluorovinyl Phenyl Sulfones

4.4 α-Fluorovinyl Weinreb Amides

4.4.1 Bis(trifluoromethyl)phenyl-Based Reagent

4.4.2 Benzothiazole-Based Reagent

4.5 α-Fluoroenones

5 Synthesis of 1,1-Difluoroalkenes

6 Mechanism of Julia-Kocienski Olefination

7 Miscellaneous Syntheses of Heteroaryl-Derived Fluorinated Sulfides and Sulfones

8 Conclusions

    References

  • 1a Smart BE. J. Fluorine Chem.  2001,  109: 
  • 1b Lemal DM. J. Org. Chem.  2004,  69: 
  • 2a Kirsch P. Modern Fluoroorganic Chemistry. Synthesis, Reactivity, Applications   Wiley-VCH; Weinheim: 2004. 
  • 2b Fluorine in Organic Chemistry   Chambers RD. Blackwell; Oxford: 2004. 
  • 2c Advances in Organic Synthesis: Modern Organofluorine Chemistry - Synthetic Aspects   Vol. 2:  Laali KK. Bentham Science Publishers; Bussum: 2006. 
  • 2d Current Fluoroorganic Chemistry: New Synthetic Directions, Technologies, Materials, and Biological Applications   Soloshonok VA. Mikami K. Yamazaki T. Welch JT. Honek JF. American Chemical Society; Washington DC: 2007. 
  • See, for example, the following:
  • 3a Jeschke P. ChemBioChem  2004,  5:  570 
  • 3b Bégué J.-P. Bonnet-Delpon D. J. Fluorine Chem.  2006,  127:  992 
  • 3c Bégué J.-P. Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine   John Wiley & Sons; Hoboken NJ: 2008. 
  • 4a

    Special issue on Fluorinated Synthons, J. Fluorine Chem. 2004, 125, 477.

  • 4b Fluorine-Containing Synthons   Soloshonok VA. American Chemical Society; Washington DC: 2005. 
  • See for example:
  • 5a Selective Fluorination in Organic and Bioorganic Chemistry   Welch JT. American Chemical Society; Washington DC: 1991. 
  • 5b Berkowitz DB. Karukurichi KR. de la Salud-Bea R. Nelson DL. McCune CD. J. Fluorine Chem.  2008,  129:  731 
  • 6 Mikami K. Itoh Y. Yamanaka M. Chem. Rev.  2004,  104: 
  • 7 Burton DJ. Yang Z.-Y. Qiu W. Chem. Rev.  1996,  96:  1641 
  • 8a Blakemore PR. J. Chem. Soc., Perkin Trans. 1  2002,  2563 
  • 8b Plesniak K. Zarecki A. Wicha J. Top. Curr. Chem.  2007,  275:  163 
  • 8c Aïssa C. Eur. J. Org. Chem.  2009,  1831 
  • 9 Baudin JB. Hareau G. Julia SA. Ruel O. Tetrahedron Lett.  1991,  32:  1175 
  • 10 Blakemore PR. Cole WJ. Kocienski PJ. Morley A. Synlett  1998,  26 
  • 11 Kocienski PJ. Bell A. Blakemore PR. Synlett  2000,  365 
  • 12a Baudin JB. Hareau G. Julia SA. Ruel O. Bull. Soc. Chim. Fr.  1993,  130:  336 
  • 12b Baudin JB. Hareau G. Julia SA. Lorne R. Ruel O. Bull. Soc. Chim. Fr.  1993,  130:  856 
  • 13a Alonso DA. Nájera C. Varea M. Tetrahedron Lett.  2004,  45:  573 
  • 13b Alonso DA. Fuensanta M. Nájera C. Varea M. J. Org. Chem.  2005,  70:  6404 
  • 14 Makosza M. Bujok R. Synlett  2008,  586 
  • 15 Mirk D. Grassot J.-M. Zhu J. Synlett  2006,  1255 
  • 16 Chevrie D. Lequeux T. Demoute JP. Pazenok S. Tetrahedron Lett.  2003,  44:  8127 
  • 17 Pazenok S, Demoute JP, Zard S, and Lequeux T. inventors; WO  0,240,459.  2002; Chem. Abstr. 2002, 136, 386131
  • 18 Ghosh AK. Zajc B. Org. Lett.  2006,  8:  1553 
  • 19a Differding E. Rüegg GM. Tetrahedron Lett.  1991,  32:  3815 
  • 19b Differding E. Wehrli M. Tetrahedron Lett.  1991,  32:  3819 
  • 20 Zajc B. J. Org. Chem.  1999,  64:  1902 
  • 21 First reported syntheses of 8-fluoro-2′-deoxynucleosides: Ghosh AK. Lagisetty P. Zajc B. J. Org. Chem.  2007,  72:  8222 
  • 22 Anbarasan P. Neumann H. Beller M. Angew. Chem. Int. Ed.  2010,  49:  2219 
  • 23a Umemoto T. Kawada K. Tomita K. Tetrahedron Lett.  1986,  27:  4465 
  • 23b Umemoto T. Fukami S. Tomizawa G. Harasawa K. Kawada K. Tomita K. J. Am. Chem. Soc.  1990,  112:  8563 
  • 23c Umemoto T. N-Fluoropyridinium Salts, Synthesis and Fluorination Chemistry, In Advances in Organic Synthesis: Modern Organofluorine Chemistry - Synthetic Aspects   Vol. 2:  Laali K. Bentham Science Publishers; Bussum: 2006.  p.159-181  
  • 24 Yamada S. Gavryushin A. Knochel P. Angew. Chem. Int. Ed.  2010,  49:  2215 
  • 25a Liu P. Jacobsen EN. J. Am. Chem. Soc.  2001,  123:  10772 
  • 25b Albrecht BK. Williams RM. Proc. Natl. Acad. Sci. U.S.A.  2004,  101:  11949 
  • 26 Demoute JP, Adams A, Demassey J, and Babin D. inventors; WO  9,932,426.  1999; Chem. Abstr. 1999, 131, 73815
  • 27 Calata C. Catel J.-M. Pfund E. Lequeux T. Tetrahedron  2009,  65:  3967 
  • 28 Ghosh AK. Zajc B. J. Org. Chem.  2009,  74:  8531 
  • 29 Blakemore PR. Ho DKH. Nap WM. Org. Biomol. Chem.  2005,  3:  1365 
  • 30 Zajc B. Kake S. Org. Lett.  2006,  8:  4457 
  • 31 Ito H. Saito A. Taguchi T. Tetrahedron: Asymmetry  1998,  9:  1989 
  • 32a Pfund E. Lebargy C. Rouden J. Lequeux T. J. Org. Chem.  2007,  72:  7871 
  • 32b

    In our original report (ref. 30) we stated that ketones were unreactive under the reaction conditions. Recent re-evaluation using cyclohexanone and 15 did afford the fluoroalkene in 47% isolated yield (comparable to 57% reported in ref. 27).

  • 33 Alonso DA. Fuensanta M. Gómez-Bengoa E. Nájera C. Adv. Synth. Catal.  2008,  350:  1823 
  • 34 Alonso DA. Fuensanta M. Gómez-Bengoa E. Nájera C. Eur. J. Org. Chem.  2008,  2915 
  • 35 He M. Ghosh AK. Zajc B. Synlett  2008,  999 
  • 36a Patrick TB. Nadji S. J. Fluorine Chem.  1990,  49:  147 
  • 36b Xu Z.-Q. DesMarteau DD. J. Chem. Soc., Perkin Trans. 1  1992,  313 
  • 37 van Steenis JH. van den Nieuwendijk AMCH. van der Gen A. J. Fluorine Chem.  2004,  125:  107 
  • 38 del Solar M. Ghosh AK. Zajc B. J. Org. Chem.  2008,  73:  8206 
  • 39 Olah GA. Narang SC. Fung AP. Balaram Gupta BG. Synthesis  1980,  657 
  • 40a Koizumi T. Hagi T. Horie Y. Takeuchi Y. Chem. Pharm. Bull.  1987,  35:  3959 
  • 40b McCarthy JR. Matthews DP. Edwards ML. Stemerick DM. Jarvi ET. Tetrahedron Lett.  1990,  31:  5449 
  • 40c Asakura N. Usuki Y. Iio H. J. Fluorine Chem.  2003,  124:  81 
  • 40d Andrei D. Wnuk SF. J. Org. Chem.  2006,  71:  405 
  • 41a Inbasekaran M. Peet NP. McCarthy JR. LeTourneau ME. J. Chem. Soc., Chem. Commun.  1985,  678 
  • 41b Prakash GKS. Chacko S. Vaghoo H. Shao N. Gurung L. Mathew T. Olah GA. Org. Lett.  2009,  11:  1127 
  • 42 Prakash GKS. Wang F. Shao N. Mathew T. Rasul G. Haiges R. Stewart T. Olah GA. Angew. Chem. Int. Ed.  2009,  48:  5358 
  • 43 Manjunath BN. Sane NP. Aidhen IS. Eur. J. Org. Chem.  2006,  2851 
  • 44 Ghosh AK. Banerjee S. Sinha S. Kang SB. Zajc B. J. Org. Chem.  2009,  74:  3689 
  • 45 Van der Veken P. Senten K. Kertèsz I. De Meester I. Lambeir A.-M. Maes M.-B. Scharpé S. Haemers A. Augustyns K. J. Med. Chem.  2005,  48:  1768 
  • 46 Zhao Y. Huang W. Zhu L. Hu J. Org. Lett.  2010,  12:  1444 
  • 47 Furukawa T. Goto Y. Kawazoe J. Tokunaga E. Nakamura S. Yang Y. Du H. Kakehi A. Shiro M. Shibata N. Angew. Chem. Int. Ed.  2010,  49:  1642 
  • 48 Castejon HJ. Wiberg KB. J. Org. Chem.  1998,  63:  3937 
  • 50 Calata C. Pfund E. Lequeux T. J. Org. Chem.  2009,  74:  9399 
  • 51 Petko KI. Yagupol’skii LM. Russ. J. Org. Chem. (Engl. Transl.)  2004,  40:  601 ; Zh. Org. Khim. 2004, 40, 627
  • 52a Petko KI. Yagupolskii LM. J. Fluorine Chem.  2001,  108:  211 
  • 52b Dransch G, Hörlein G, Emmel L, and Bonin W. inventors; DE  2,334.  356; Chem. Abstr. 1975, 83, 10056
  • 53 Zhang W. Wang F. Hu J. Org. Lett.  2009,  11:  2109 
  • 54 Zhang W. Zhu L. Hu J. Tetrahedron  2007,  63:  10569 
  • 55 Hou Y. Higashiya S. Fuchigami T. J. Org. Chem.  1997,  62:  9173 
  • 56 Riyadh SM. Ishii H. Fuchigami T. Tetrahedron  2001,  57:  8817 
  • 57 Zagipa B. Nagura H. Fuchigami T. J. Fluorine Chem.  2007,  128:  1168 
  • 58 Hidaka A. Zagipa B. Nagura H. Fuchigami T. Synlett  2007,  1148 
  • 59 Nagura H. Fuchigami T. Synlett  2008,  1714 
  • 60 Dawood KM. Higashiya S. Hou Y. Fuchigami T.
    J. Org. Chem.  1999,  64:  7935 
  • 61 Sawamura T. Kuribayashi S. Inagi S. Fuchigami T. Org. Lett.  2010,  12:  644 
  • 62 Wnuk SF. Bergolla LA. Garcia PI. J. Org. Chem.  2002,  67:  3065 
  • 63 Wnuk SF. Garcia PI. Wang Z. Org. Lett.  2004,  6:  2047 
49

For the purpose of comparison, 2-naphthaldehyde was reacted with 15 in the presence of MgBr2, using the same conditions as those reported for 47 (ref. 35). Fluoroalkene was obtained in 14:86 E/Z ratio, consistent with reported results (ref. 32a).