Abstract
This review focuses on the applications of multicenter organocatalysts,
which can form chiral hydrogen bonded networks. The high tunabilities
of these catalysts in terms of their active sites, chiral spacers,
and tolerated reaction conditions have been used advantageously
in applications to various classes of catalytic asymmetric carbon-carbon
and carbon-oxygen bond forming reactions. The high stereoselectivities
of these reactions are attributed to the chemoselective dual activation
of both the nucleophile and electrophile reacting partners in asymmetric
space. The key requirements for the cooperative effects of weak
noncovalent-bonding interactions are discussed.
1 Introduction
2 General Concept for the Design of Chiral Hydrogen Bonding
Networks
3 Bis-thiourea-type Homo-bifunctional Organocatalysts
3.1 Enantioselective Morita-Baylis-Hillman
Reaction
4 Guanidinium-Thiourea Hetero-multifunctional Organocatalysts
4.1 Catalytic Diastereo- and Enantioselective Nitroaldol Reaction
of Prochiral Aldehydes
4.2 Catalytic Diastereoselective Nitroaldol Reaction of α-Chiral
Aldehydes
4.3 Catalytic Asymmetric Nitroaldol Reaction of α-Keto
Esters
4.4 Catalytic Asymmetric Nitro-Mannich-type Reaction
4.5 Catalytic Asymmetric Mannich-type Reaction with Malonates
5 Guanidinium-Urea Hetero-multifunctional Organocatalysts
5.1 Catalytic Asymmetric Epoxidation with Hydrogen Peroxide
6 Summary
Key words
asymmetric synthesis - catalysis - guanidinium - thiourea - urea
References
1a
Silverman RB.
The Organic Chemistry
of Enzyme-Catalyzed Reactions
Academic;
San
Diego / CA:
2002.
1b
Duagas H.
Bioorganic
Chemistry
Springer;
New York:
1999.
For reviews, see:
2a
Shibasaki M.
Matsunaga S.
Kumagai N.
Synlett
2008,
1583
2b
Shibasaki M.
Kanai M.
Org. Biomol. Chem.
2007,
5:
2027
2c
Shibasaki M.
Kanai M.
Matsunaga S.
Aldrichimica
Acta
2006,
39:
31
2d
Shibasaki M.
Matsunaga S.
Chem. Soc. Rev.
2006,
35:
269
2e
Kanai M.
Kato N.
Ichikawa E.
Shibasaki M.
Synlett
2005,
1491
2f
Shibasaki M.
Yoshikawa N.
Chem. Rev.
2002,
102:
2187
2g
Shibasaki M.
Sasai H.
Arai T.
Angew.
Chem. Int. Ed. Engl.
1997,
36:
1236
3a
Lewis Acids in Organic Synthesis
Vols.
1 and 2:
Yamamoto H.
Wiley;
New
York:
2000.
3b
Comprehensive
Asymmetric Catalysis
Vols. 1-3:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
1999.
4a
Jeffrey G.
Saenger W.
Hydrogen Bonding in Biological Structures
Springer;
Berlin:
1991.
4b
Desiraju GR.
Steiner T.
The Weak Hydrogen Bond in Structural Chemistry
and Biology
Oxford University Press;
Oxford:
1999.
4c
Williams DH.
Westwell MS.
Chem.
Soc. Rev.
1998,
27:
57
For selected general reviews on
asymmetric organocatalysis, see:
5a
Berkessel A.
Gröger H.
Asymmetric Organocatalysis
Wiley-VCH;
Weinheim:
2005.
5b
Enantioselective
Organocatalysis: Reaction and Experimental Procedures
Dalko PI.
Wiley and
Sons;
New York:
2007.
5c
Dalko PI.
Moisan L.
Angew. Chem. Int.
Ed.
2001,
40:
3726
5d
Dalko PI.
Moisan L.
Angew. Chem.
Int. Ed.
2004,
43:
5138
5e
MacMillan DWC.
Nature (London)
2008,
455:
304
For selected reviews on asymmetric
catalysis by hydrogen bond donors, see:
6a
Doyle AG.
Jacobsen EN.
Chem. Rev.
2007,
107:
5713
6b
Takemoto Y.
Miyabe H.
Chimia
2007,
61:
269
6c
Connon SJ.
Chem. Eur. J.
2006,
12:
5418
6d
Taylor MS.
Jacobsen EN.
Angew.
Chem. Int. Ed.
2006,
45:
1520
6e
Akiyama T.
Itoh J.
Fuchibe K.
Adv.
Synth. Catal.
2006,
348:
999
6f
Takemoto Y.
Org. Biomol.
Chem.
2005,
3:
4299
6g
Schreiner PR.
Chem. Soc. Rev.
2003,
32:
289
For pioneering work using chiral
urea/thiourea catalysts by Jacobsen’s group, see:
7a
Sigman MS.
Jacobsen EN.
J.
Am. Chem. Soc.
1998,
120:
4901
For a recent mechanistic study, see:
7b
Zuend SJ.
Jacobsen EN.
J.
Am. Chem. Soc.
2007,
129:
15872
For counterion catalysis by Jacobsen’s group, see:
7c
Raheem I.
Thiara PS.
Peterson EA.
Jacobsen EN.
J.
Am. Chem. Soc.
2007,
129:
13404
7d
Reisman SE.
Doyle AG.
Jacobsen
EN.
J. Am. Chem. Soc.
2008,
130:
7198
For other works by Jacobsen’s group:
7e See also ref. 6; and
references cited therein
For Takemoto’s original
work, see:
8a
Okino T.
Hoashi Y.
Takemoto Y.
J.
Am. Chem. Soc.
2003,
125:
12672
For other works by Takemoto’s group, see:
8b
Miyabe M.
Takemoto Y.
Bull. Chem. Soc. Jpn.
2008,
81:
785
8c See also ref. 6
9 For other chiral urea and thiourea
catalysts, see ref. 6 and references cited therein.
For reviews on chiral guanidine
catalysts, see:
10a
Ishikawa T.
Isobe T.
Chem. Eur. J.
2002,
8:
552
10b
Ishikawa T.
Kumamoto T.
Synthesis
2006,
737
10c
Leow D.
Tan
C.-H.
Chem. Asian J.
2009,
4:
488
For our work, see:
11a
Nagasawa K.
Georgieva A.
Takahashi H.
Nakata T.
Tetrahedron
2000,
56:
187
11b
Nagasawa K.
G eorgieva A.
Takahashi H.
Nakata T.
Tetrahedron
2001,
57:
8959
11c
Kita T.
Georgieva A.
Hashimoto Y.
Nakata T.
Nagasawa K.
Angew.
Chem. Int. Ed.
2002,
41:
2832
11d
Kita T.
Shin B.
Hashimoto Y.
Nagasawa K.
Heterocycles
2007,
73:
241
12 For other chiral guanidine and guanidinium
catalysts, see ref. 10 and references cited therein.
For representative examples, see:
13a
Schuster T.
Bauch M.
Dürner D.
Göbel MW.
Org. Lett.
2000,
2:
179
13b
Schuster T.
Kurz M.
Göbel MW.
J.
Org. Chem.
2000,
65:
1697
14
Yoon TP.
Jacobsen EN.
Science (Washington,
DC)
2003,
299:
1691
15a
Sohtome Y.
Tanatani A.
Hashimoto Y.
Nagasawa K.
Tetrahedron
Lett.
2004,
45:
5589
15b
Sohtome Y.
Takemura N.
Takagi R.
Hashimoto Y.
Nagasawa K.
Tetrahedron
2008,
64:
9423
15c
Sohtome Y.
Hashimoto Y.
Nagasawa K.
Adv.
Synth. Catal.
2005,
347:
1643
15d
Sohtome Y.
Takemura N.
Iguchi T.
Hashimoto Y.
Nagasawa K.
Synlett
2006,
144
15e
Sohtome Y.
Hashimoto Y.
Nagasawa K.
Eur.
J. Org. Chem.
2006,
2894
15f
Sohtome Y.
Takemura N.
Takada K.
Takagi R.
Iguchi T.
Nagasawa K.
Chem. Asian J.
2007,
2:
1150
15g
Takada K.
Takemura N.
Cho K.
Sohtome Y.
Nagasawa K.
Tetrahedron
Lett.
2008,
49:
1623
15h
Shin B.
Tanaka S.
Kita T.
Hashimoto Y.
Nagasawa K.
Heterocycles
2008,
76:
801
15i
Takada K.
Nagasawa K.
Adv. Synth. Catal.
2009,
351:
345
15j
Takada K.
Tanaka S.
Nagasawa K.
Synlett
2009,
1643
15k
Tanaka S.
Nagasawa K.
Synlett
2009,
667
16a
Nagasawa K.
Georgieva A.
Koshino H.
Nakata T.
Kita T.
Hashimoto Y.
Org.
Lett.
2002,
4:
177
16b
Ishiwata T.
Hino T.
Koshino H.
Hashimoto Y.
Nakata T.
Nagasawa K.
Org. Lett.
2002,
4:
2921
16c
Nagasawa K.
Hashimoto Y.
Chem. Rec.
2003,
3:
201
16d
Shimokawa J.
Shirai K.
Tanatani A.
Hashimoto Y.
Nagasawa K.
Angew.
Chem. Int. Ed.
2004,
43:
1559
16e
Shimokawa J.
Ishiwata T.
Shirai K.
Koshino H.
Tanatani A.
Nakata T.
Hashimoto Y.
Nagasawa K.
Chem. Eur. J.
2005,
11:
6878
16f
Nagasawa K.
Shimokawa J.
J. Synth. Org. Chem. Jpn.
2006,
64:
539
16g
Iwamoto O.
Koshino H.
Hashizume D.
Nagasawa K.
Angew. Chem. Int. Ed.
2007,
46:
8625
16h
Iwamoto O.
Shinohara R.
Nagasawa K.
Chem.
Asian J.
2009,
4:
277
17
Sohtome Y.
Tanatani A.
Hashimoto Y.
Nagasawa K.
Chem. Pharm. Bull.
2004,
52:
477
Curran apparently was the first
to use urea derivatives for general acid-promoted reactions, see:
18a
Curran DP.
Kuo LH.
J.
Org. Chem.
1994,
59:
3259
18b
Curran DP.
Kuo LH.
Tetrahedron
Lett.
1995,
36:
6647
18c
Wilcox
CS.
Kim E.
Romano D.
Kuo LH.
Burt AL.
Curran DP.
Tetrahedron
1995,
51:
621
19
Hedstrom L.
Chem.
Rev.
2002,
102:
4501
20a
Morita K.
Suzuki Z.
Hirose H.
Bull. Chem. Soc. Jpn.
1968,
41:
2815
20b Baylis AB, and Hillman MED. inventors;
DE 2155113.
; Chem. Abstr . 1972 , 77 , 34174q
For general reviews, see:
21a
Masson G.
Housseman C.
Zhu J.
Angew.
Chem. Int. Ed.
2007,
46:
4614
21b
Basavaiah D.
Rao KV.
Reddy RJ.
Chem.
Soc. Rev.
2007,
36:
1581
21c
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem.
Rev.
2003,
103:
811
21d
Iwabuchi Y.
Hatakeyama S.
J. Synth. Org. Chem., Jpn.
2002,
60:
2
21e
Langer P.
Angew.
Chem. Int. Ed.
2000,
39:
3049
21f
Ciganek E. In
Organic Reactions
Vol.
51:
Paquette LA.
Wiley;
New
York:
1977.
p.201
For pioneering work on asymmetric
MBH reactions by Hatakeyama’s group, see:
22a
Iwabuchi Y.
Nakatani M.
Yokoyama N.
Hatakeyama S.
J. Am. Chem. Soc.
1999,
121:
10219
22b
Iwabuchi Y.
Furukawa M.
Esumi T.
Hatakeyama S.
Chem. Commun. (Cambridge)
2001,
2030
22c
Iwabuchi Y.
Sugihara T.
Esumi T.
Hatakeyama S.
Tetrahedron Lett.
2001,
42:
7867
22d
Nakano A.
Takahashi K.
Ishihara J.
Hatakeyama S.
Org. Lett.
2006,
8:
5357
For representative chiral Lewis
base catalysts, see:
23a
Oishi T.
Oguri H.
Hirama M.
Tetrahedron: Asymmetry
1995,
6:
1241
23b
Marko IE.
Giles PR.
Hindley NJ.
Tetrahedron
1997,
53:
1015
23c
Barrett AGM.
Cook AS.
Kamimura A.
Chem. Commun.
1998,
2533
23d
Imbriglio JE.
Vasbinder MM.
Miller SJ.
Org. Lett.
2003,
5:
3741
23e
Vasbinder MM.
Imbriglio
JE.
Miller SJ.
Tetrahedron
2006,
62:
11450
23f
Aroyan CE.
Vasbinder MM.
Miller SJ.
Org. Lett.
2005,
7:
3849
23g
Tang H.
Zhao G.
Zhou Z.
Zhou Q.
Tang C.
Tetrahedron
Lett.
2006,
47:
5717
23h
Xu J.
Guan Y.
Yang S.
Ng Y.
Peh G.
Tan C.-H.
Chem.
Asian J.
2006,
1:
724
For other chiral Lewis base catalysts
23i See also ref. 20; and
references cited therein
For chiral Brønsted acid
and achiral Lewis base systems, see:
24a
Yamada YMA.
Ikegami S.
Tetrahedron
Lett.
2000,
41:
2165
24b
McDougal NT.
Schaus SE.
J.
Am. Chem. Soc.
2003,
125:
12094
24c
McDougal NT.
Trevellini WL.
Rodgen SA.
Kliman LT.
Schaus
SE.
Adv. Synth.
Catal.
2004,
346:
1231
24d
Rodgen SA.
Schaus SE.
Angew.
Chem. Int. Ed.
2006,
45:
4929
24e See also ref. 15a
24f See also ref. 15b.
Recently improved bis-thiourea catalysts were reported by Berkessel
and Shi’s groups, see:
24g
Berkessel A.
Roland K.
Neudöfl JM.
Org. Lett.
2006,
8:
4195
24h
Shi M.
Liu X.-G.
Org. Lett.
2008,
10:
1043
25 For a review of solvent-free approaches,
see: Walsh PJ.
Li H.
de Parrodi CA.
Chem. Rev.
2007,
107:
2503
26a
Schreiner PR.
Wittkopp A.
Org.
Lett.
2002,
4:
217
26b
Wittkopp A.
Schreiner PR.
Chem. Eur. J.
2003,
9:
407
These results are not entirely
novel; Connon and Maher also reported very similar results with
the use of methyl acrylate and methyl vinyl ketone at almost the
same time as our report, see:
27a
Maher DJ.
Connon SJ.
Tetrahedron
Lett.
2004,
45:
1301
For other works by Connon’s group:
27b See also ref. 6, including
their review
27c
Connon SJ.
Synlett
2009,
354
28
Jones CES.
Turega SM.
Clarke ML.
Philp D.
Tetrahedron
Lett.
2008,
49:
4666
For mechanistic studies on the
MBH reaction, see:
29a
Raheem IT.
Jacobsen EN.
Adv.
Synth. Catal.
2005,
347:
1701
29b
Aggawal VK.
Fulford SY.
Lloyd-Jones GC.
Angew. Chem. Int. Ed.
2005,
44:
1706
29c
Price KE.
Broadwater SJ.
Jung HM.
McQuade DT.
Org. Lett.
2005,
7:
147
29d
Price KE.
Broadwater SJ.
Walker BJ.
McQuade DT.
J.
Org. Chem.
2005,
70:
3980
29e
Buskens P.
Klankermayer J.
Leitner W.
J.
Am. Chem. Soc.
2005,
127:
16762
30
Henry LCR.
Hebd. Seances Acad. Sci.
1895,
120:
1265
31a
Palomo C.
Oiarbide M.
Laso A.
Eur. J. Org. Chem.
2007,
2561
31b
Boruwa J.
Gogoi N.
Saikia PP.
Barua NC.
Tetrahedron: Asymmetry
2006,
17:
3315
31c
Palomo C.
Oiarbide M.
Mielgo A.
Angew.
Chem. Int. Ed.
2004,
43:
5442
31d
Ono N.
The Nitro Group in Organic Synthesis
Wiley-VCH;
New
York:
2001.
For syn -selective
nitroaldol reactions, see:
32a
Sasai H.
Tokunaga T.
Watanabe S.
Suzuki T.
Itoh N.
Shibasaki M.
J. Org. Chem.
1995,
60:
7388
32b
Arai T.
Watanabe M.
Yanagisawa A.
Org.
Lett.
2007,
9:
3595
32c
Arai T.
Takashita R.
Endo Y.
Watanabe M.
Yanagisawa A.
J.
Org. Chem.
2008,
73:
4903
32d
Toussaint A.
Pfaltz A.
Eur. J. Org. Chem.
2008,
4591
For anti -selective nitroaldol reactions,
see:
32e
Uraguchi D.
Sakaki S.
Ooi T.
J.
Am. Chem. Soc.
2007,
129:
12392
32f
Nitabaru T.
Kumagai N.
Shibasaki M.
Tetrahedron
Lett.
2008,
49:
272
32g
Handa S.
Nagawa K.
Sohtome Y.
Matsunaga S.
Shibasaki M.
Angew.
Chem. Int. Ed.
2008,
47:
3230
For the first report of an enantioselective
nitroaldol reaction with nitromethane, see:
33a
Sasai H.
Suzuki T.
Arai S.
Arai T.
Shibasaki M.
J. Am.
Chem. Soc.
1992,
114:
4418
For other works:
33b See also ref. 31a;
and references cited therein
33c See also ref. 31b;
and references cited therein
33d See also ref. 31c;
and references cited therein
34a
Tosaki S.
Hara K.
Gnanadesikan V.
Morimoto H.
Harada S.
Sugita M.
Yamagiwa N.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2006,
128:
11776
34b
Hara K.
Tosaki S.
Gnanadesikan V.
Morimoto H.
Harada S.
Sugita M.
Yamagiwa N.
Matsunaga S.
Shibasaki M.
Tetrahedron
2009,
65:
5030
For reviews on asymmetric phase-transfer
catalysts, see:
35a
Maruoka K.
Ooi T.
Chem. Rev.
2003,
103:
3013
35b
O’Donnell MJ.
Acc. Chem. Res.
2004,
37:
506
35c
Lygo B.
Andrews BI.
Acc. Chem. Res.
2004,
37:
518
35d
Hashimoto T.
Maruoka K.
Chem. Rev.
2007,
107:
5656
35e
Maruoka K.
Asymmetric Phase Transfer Catalysis
Wiley-VCH;
Weinheim:
2008.
36a
Ohshima T.
Shibuguchi T.
Fukuta Y.
Shibasaki M.
Tetrahedron
2004,
60:
7743
36b
Chinchilla R.
Mazon P.
Nájera C.
Ortega FJ.
Tetrahedron: Asymmetry
2004,
15:
2603
37
Klussmann M.
Iwamura H.
Mathew SP.
Wells DH.
Pandya U.
Armstrong A.
Blackmond DG.
Nature (London)
2006,
441:
621
For a discussion about long alkyl
chain effects on quaternary ammonium, see:
38a
Kitamura M.
Shirakawa S.
Maruoka K.
Angew.
Chem. Int. Ed.
2005,
44:
1549
For combined proline-surfactant organocatalysts, see:
38b
Mase N.
Nakai Y.
Ohara N.
Yoda H.
Takabe K.
Tanaka F.
Barbas CF.
J.
Am. Chem. Soc.
2006,
128:
734
38c
Hayashi Y.
Aratake S.
Okano T.
Takahashi J.
Sumiya T.
Shoji M.
Angew. Chem. Int. Ed.
2006,
45:
5527
For approaches to asymmetric reactions using an excess of
chiral surfactant, see:
38d
Dasgupta A.
Mitra RN.
Roy S.
Das PK.
Chem. Asian J.
2006,
1:
780 ; and references cited therein
For a discussion about surfactant
effects on secondary amine catalyzed aldol reactions:
39a See ref. 38b. See also:
39b
Cordova A.
Notz W.
Barbas CF.
Chem. Commun.
(Cambridge)
2002,
3024
39c
Peng Y.-Y.
Ding Q.-P.
Li Z.
Wang PG.
Cheng J.-P.
Tetrahedron
Lett.
2003,
44:
3871
40
Girard C.
Kagan HB.
Angew. Chem. Int. Ed.
1998,
37:
2922
41 In the absence of KOH, the reaction
did not proceed at all. In addition, no reaction occurred after
pretreatment of catalyst 2a with an excess
of KOH (10 equiv to 2a ). In this catalytic system,
KOH might deprotonate the nitroalkane.
For the isolation and structural
determination of compound 16b , see:
42a
Kakeya H.
Morishita M.
Kobinata K.
Osono M.
Ishizuka M.
Osada H.
J. Antibiot.
1998,
51:
1126
42b
Kakeya H.
Morishita M.
Koshino H.
Morita T.
Kobayashi K.
Osada H.
J. Org. Chem.
1999,
64:
1052
For a review on the stereoselective synthesis of compounds 16a and 16b , see:
42c
Grajewska A.
Rozwadowska MD.
Tetrahedron:
Asymmetry
2007,
18:
803 ;
and references cited therein
For catalytic diastereoselective
nitroaldol reactions of chiral aldehydes with nitromethane:
43a See ref. 15d. See also:
43b
Sasai H.
Kim W.-S.
Suzuki T.
Shibasaki M.
Mistuda M.
Hasegawa J.
Ohashi T.
Tetrahedron
Lett.
1994,
35:
6123
43c
Corey EJ.
Zhang F.-Y.
Angew.
Chem. Int. Ed.
1999,
38:
1931
For catalytic doubly diastereoselective nitroaldol reactions
of chiral aldehydes with prochiral nitroalkanes, see:
43d
Sohtome Y.
Kato Y.
Handa S.
Aoyama N.
Nagawa K.
Matsunaga S.
Shibasaki M.
Org. Lett.
2008,
10:
2231 ; and references cited therein
44
Reetz MT.
Chem.
Rev.
1999,
99:
1121
For general reviews on the stereoselective
construction of quaternary stereocenters, see:
45a
Christofees J.
Baro A.
Adv. Synth. Catal.
2005,
347:
1473
45b
Quaternary Stereocenters
- Challenges and Solutions for Organic Synthesis
Christofees J.
Baro A.
Wiley-VCH;
Weinheim:
2005.
45c
Douglas CJ.
Overman LE.
Proc. Natl.
Acad. Sci. U.S.A.
2004,
101:
5363
For enantioselective nitroaldol
reactions of α-keto esters, see:
46a
Christensen C.
Juhl K.
Jørgensen KA.
Chem. Commun. (Cambridge)
2001,
2222
46b
Christensen C.
Juhl K.
Jørgensen KA.
J. Org. Chem.
2002,
67:
4875
46c
Lu S.-F.
Du D.-M.
Zhang SW.
Xu J.
Tetrahedron: Asymmetry
2004,
15:
3433
46d
Du D.-M.
Lu S.-F.
Fang T.
Xu J.
J. Org. Chem.
2005,
70:
3712
46e
Qin B.
Xiao X.
Liu X.
Huang J.
Wen Y.
Feng X.
J.
Org. Chem.
2007,
72:
10302
46f
Choudary BM.
Ranganath KVS.
Pal U.
Kantam ML.
Sreedhar B.
J. Am. Chem. Soc.
2005,
127:
13167
46g
Li H.
Wang B.
Deng L.
J.
Am. Chem. Soc.
2006,
128:
732
For enantioselective nitroaldol reactions of α-ketophosphonates,
see:
46h
Mandal T.
Samanta S.
Zhao C.-G.
Org.
Lett.
2007,
9:
943
For enantioselective nitroaldol reactions of trifluoromethyl ketones,
see:
46i
Tur F.
Saá JM.
Org. Lett.
2007,
9:
5079
For catalytic kinetic resolution approaches to construct chiral
tertiary nitroaldol reaction products from simple ketones:
46j See also ref. 34.
47 Deng’s group reported an
example of a cinchona alkaloid catalyzed nitroaldol reaction of α-keto
esters with nitroethane; see ref. 46g.
48 For original work concerning ‘on
water’ acceleration, see: Narayan S.
Muldoon J.
Finn MG.
Fokin VV.
Kolb HC.
Sharpless KB.
Angew. Chem. Int.
Ed.
2005,
44:
3275
For general reviews on catalytic
asymmetric Mannich-type reactions, see:
49a
Ting A.
Schaus SE.
Eur. J. Org. Chem.
2007,
5797
49b
Verkade JM.
van Hemert JC.
Quaedflieg PLM.
Rutjes FJT.
Chem. Soc. Rev.
2007,
37:
29
For reviews on catalytic asymmetric
nitro-Mannich-type reactions, see:
50a
Westermann B.
Angew.
Chem. Int. Ed.
2003,
42:
151
50b
Marqués-Lopéz E.
Merino P.
Tejero T.
Herrera RP.
Eur.
J. Org. Chem.
2009,
2401
For pioneering work on anti -selective catalytic asymmetric nitro-Mannich-type
reactions, see:
51a
Yamada K.-I.
Moll G.
Shibasaki M.
Synlett
2001,
980
For other works:
51b See also ref. 50; and
references cited therein
52 For pioneering work on syn -selective catalytic asymmetric nitro-Mannich-type
reactions, see: Handa S.
Gnanadesikan V.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2007,
129:
4900
53a
Petrini M.
Chem. Rev.
2005,
105:
3949
53b
Petrini M.
Torregiani E.
Synthesis
2007,
159
For general reviews on catalytic
asymmetric epoxidations, see:
54a
Modern
Oxidation Methods
Bäckvall J.-E.
Wiley-VCH;
Weinheim:
2004.
54b
Xia Q.-H.
Ge H.-Q.
Ye C.-P.
Liu Z.-M.
Su K.-X.
Chem. Rev.
2005,
105:
1603
55
Campos-Martin JM.
Blanco-Brieva G.
Fierro JLG.
Angew. Chem. Int. Ed.
2006,
45:
6962 ; and references cited therein
56a
Juliá S.
Masana J.
Vega JC.
Angew. Chem. Int. Ed. Engl.
1980,
19:
929
56b
Juliá S.
Guixer J.
Masana J.
Rocas J.
Colonna S.
Annuziata R.
Molinari H.
J. Chem. Soc., Perkin Trans. 1
1982,
1317
For representative organocatalytic
epoxidations with hydrogen peroxide, see:
57a
Arai S.
Tsuge H.
Shioiri T.
Tetrahedron
Lett.
1998,
39:
7563
57b
Arai S.
Tsuge H.
Oku M.
Miura M.
Shioiri T.
Tetrahedron
2002,
58:
1623
57c
Dehmlow EV.
Düttmann S.
Neumann B.
Stammler H.-G.
Eur.
J. Org. Chem.
2002,
2087
57d
Berkessel A.
Gasch N.
Glaubiz K.
Koch C.
Org. Lett.
2001,
3:
3839
57e
Kelly DR.
Roberts SM.
Biopolymers
2006,
84:
74
57f
Berkessel A.
Koch B.
Toniolo C.
Rainaldi M.
Broxterman QB.
Kaptein B.
Biopolymers
2006,
84:
90
57g
Geller T.
Gerlach A.
Krüger CM.
Militzer H.-C.
Tetrahedron
Lett.
2004,
45:
5065
57h
Geller T.
Krüger CM.
Militzer H.-C.
Tetrahedron Lett.
2004,
45:
5069
57i
Yi H.
Zou G.
Li Q.
Chen Q.
Tang J.
He M.-y.
Tetrahedron
Lett.
2005,
46:
5665
57j
Hori K.
Tamura M.
Tani K.
Nishiwaki N.
Ariga M.
Tohda Y.
Tetrahedron
Lett.
2006,
47:
3115
57k
Sundén H.
Ibrahem I.
Córdova A.
Tetrahedron Lett.
2006,
47:
99
57l
Zhao G.-L.
Ibrahem I.
Sundén H.
Córdova A.
Adv. Synth. Catal.
2006,
349:
1210
57m
Marigo M.
Franzén J.
Poulsen TB.
Zhuang W.
Jørgensen KA.
J. Am. Chem. Soc.
2005,
127:
6964
57n
Jew S.-s.
Lee JH.
Jeong B.-S.
Yoo M.-S.
Kim
M.-J.
Lee J.
Choi S.-h.
Lee K.
Lah MS.
Park H.-g.
Angew. Chem. Int. Ed.
2005,
44:
1383
57o
Peris G.
Jakobsche CE.
Miller SJ.
J. Am. Chem. Soc.
2007,
129:
8710
57p
Wang X.
Reisinger CM.
List B.
J.
Am. Chem. Soc.
2008,
130:
6070
57q See also ref. 15k
57r
Terada M.
Nakano M.
Heterocycles
2008,
76:
1049
58a
McManus JC.
Carey JS.
Taylor RJK.
Synlett
2003,
365
58b
McManus JC.
Genski T.
Carey JS.
Taylor RJK.
Synlett
2003,
369
58c
Kumamoto T.
Ebine K.
Endo M.
Araki Y.
Fushimi Y.
Miyamoto I.
Ishikawa T.
Isobe T.
Fukuda K.
Heterocycles
2005,
66:
347
58d
Allingham MT.
Howard-Jones A.
Murphy PJ.
Thomas DA.
Caulkett PWR.
Tetrahedron
Lett.
2003,
44:
8677
58e See also ref. 57r