Planta Med 2010; 76(5): 412-417
DOI: 10.1055/s-0029-1186237
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Ameliorative Effect of the Cinnamon Oil from Cinnamomum zeylanicum upon Early Stage Diabetic Nephropathy

Awanish Mishra1 , Rajbir Bhatti1 , Amarjit Singh2 , Mohan Paul Singh Ishar1
  • 1Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
  • 2Department of Pathology, Government Medical College, Amritsar, Punjab, India
Further Information

Publication History

received July 17, 2009 revised Sept. 20, 2009

accepted Sept. 28, 2009

Publication Date:
29 October 2009 (online)


The current study was designed to evaluate the ameliorative effect of the cinnamon oil upon early stage diabetic nephropathy owing to its antioxidant and antidiabetic effect. Cinnamon oil was extracted by hydro-distillation of the dried inner bark of Cinnamomum zeylanicum Blume. Further characterization of the extracted oil was carried out using IR, 1H‐NMR, and 13C‐NMR techniques. Early stage of diabetic nephropathy was induced by administration of alloxan (150 mg/kg, i. p.). Cinnamon oil was administered at varying doses (5, 10, 20 mg/kg; i. p.) while the level of fasting blood glucose, total cholesterol, high density lipoprotein, urea, thiobarbituric acid reactive substances, reduced glutathione, and catalase were determined. These parameters in cinnamon oil treated groups were compared with those of standard (glipizide; 10 mg/kg) and vehicle treated groups in order to investigate if cinnamon oil confers a significant protection against diabetic nephropathy. Histological studies of the kidney proved the protective effect of cinnamon oil by reducing the glomerular expansion, eradicating hyaline casts, and decreasing the tubular dilatations. Our results indicate that the volatile oil from cinnamon contains more than 98 % cinnamaldehyde and that it confers dose-dependent, significant protection against alloxan-induced renal damage, the maximum decrease in fasting blood glucose having been achieved at the dose of 20 mg/kg.


  • 1 Cooper C E, Gilbert R E, Epstein M. Pathophysiology of diabetic nephropathy.  Metabolism. 1998;  47 3-6
  • 2 Gruden G, Perin P C, Camussi G. Insight on the pathogenesis of diabetic nephropathy from the study of podocyte and mesangial cell biology.  Curr Diabetes Rev. 2005;  1 27-40
  • 3 Fioretto P, Bruseghin M, Barzon I, Arboit M, Vestra M D. Diabetic nephropathy: an update on renal structure.  Int Congr Ser. 2007;  1303 51-59
  • 4 Yousef W M, Morsey M D, Waheed M M A, Ghanayeem N M, Omar A H. Effect of some calcium channel blockers in experimentally induced diabetic nephropathy in rats.  IJPT. 2004;  3 45-56
  • 5 Dandona P, Thusu K, Cook S, Snyder B, Makowski J, Armstrong D, Nicotera T. Oxidative damage to DNA in diabetes mellitus.  Lancet. 1996;  347 444-445
  • 6 Ceriello A, Bortolotti N, Falleti E, Taboga C, Tonutti L, Crescantini A, Motz E, Lizzio S, Russo A, Bartoli E. Total radical trapping antioxidant parameter in NIDDM patients.  Diabetes Care. 1997;  20 194-197
  • 7 Wolff S P, Jiang Z Y, Hunt J V. Protein glycation and oxidative stress in diabetes mellitus and ageing.  Free Radic Biol Med. 1991;  10 339-352
  • 8 Brownlee M. Biochemistry and molecular cell biology of diabetic complications.  Nature. 2001;  414 813-820
  • 9 De Mettia G, Laurenti O, Bravi C, Ghiselli A, Iuliano L, Balsano F. Effects of aldose reductase inhibition of glutathione redox status in erythrocyte of diabetic patients.  Metabolism. 1994;  43 965-968
  • 10 Sinclair A J, Girling A J, Gray L, Le Guen C, Lunec J, Barnett A H. Disturb handling of ascorbic acid in diabetic patients with and without microangiopathy during high dose ascorbate supplementation.  Diabetologia. 1991;  34 171-175
  • 11 Blakytny R, Harding J J. Glycation (non enzymic glycosilation) inactivates glutathione reductase.  Biochem J. 1992;  288 303-307
  • 12 Maejima K, Nakano S, Himeno M, Tsuda S, Makushi H, Ito T, Nakagawa A, Kigoshi T, Ishibashi T, Nishio M, Uchida K. Increased basal levels of plasma nitric oxide in type II diabetes subjects. Relationship to microvascular complications.  J Diabetes Complications. 2001;  15 135-143
  • 13 Marles R J, Farnsworth N R. Antidiabetic plants and their active constituents.  Phytomedicine. 1995;  2 137-189
  • 14 Babu P S, Prabuseenivasan S, Ignacimuthu S. Cinnamaldehyde – a potential antidiabetic agent.  Phytomedicine. 2007;  14 15-22
  • 15 Kim S H, Hyun S H, Choung S Y. Antidiabetic effects of cinnamon extract on blood glucose I db/db mice.  J Ethnopharmacol. 2006;  104 119-123
  • 16 Singh G, Maurya S, DeLampasona M P, Catalan C A. A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents.  Food Chem Toxicol. 2007;  45 1650-1661
  • 17 Tirkey N, Kaur G, Vij G, Chopra K. Curcumin, a diferuloylmethane, attenuates cyclosporine-induced renal dysfunction and oxidative stress in rat kidneys.  BMC Pharmacol. 2005;  5 15
  • 18 Okhawa H, Ohishi N, Yagi K. Assay for lipid peroxidation in animal tissues by thibarbituric acid reaction.  Anal Chem. 1979;  95 331-358
  • 19 Ellman G. Tissue sulfhydryl groups.  Arch Biochem Biophys. 1959;  82 72-77
  • 20 Aebi H. Catalase. Bergmeyer HU Methods of enzymatic analysis. New York; Chemic Academic Press, Inc. 1974: 673-685
  • 21 Sezkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas.  Physiol Res. 2001;  50 537-546
  • 22 Tüzün S, Girgin F K, Sözmen E Y, Menteş G, Ersöz B. Antioxidant status in experimental type 2 diabetes mellitus: effects of glibenclamide and glipizide on various rat tissues.  Exp Toxicol Pathol. 1999;  51 436-441
  • 23 Qin B, Nagasaki M, Ren M, Bajotto G, Oshida Y, Sato Y. Cinnamon extract (traditional herb) potentiates in vivo insulin regulated glucose utilization via enhancing insulin signaling in rats.  Diabetes Res Clin Pract. 2003;  62 139-148
  • 24 Aida K, Shindo H, Tawata M, Onaya T. Inhibition of aldose reductase activities by kampo medicines.  Planta Med. 1987;  53 131-135
  • 25 Jarvill-Taylor K J, Anderson R A, Graves D J. A hydroxychalcone derived from cinnamon functions as a mimetic for insulin in 3T3-L1 adipocytes.  J Am Coll Nutr. 2001;  20 327-336
  • 26 Shirwaikar A, Rajendran K, Dinesh Kumar C, Bodla R. Antidiabetic activity of aqueous leaf extract of Annona squamosa in streptozotocin-nicotinamide type 2 diabetic rats.  J Ethnopharmacol. 2004;  91 171-175
  • 27 Mogensen C E, Keane W F, Bennett P H, Jerums G, Parving H H, Passa P, Steffes M W, Striker G E, Viberti G C. Prevention of diabetic renal disease with special reference to microalbuminuria.  Lancet. 1995;  346 1080-1084
  • 28 Singh R, Alavi N, Singh A K, Leehey D J. Role of angiotensin II in glucose-induced inhibition of mesangial matrix degradation.  Diabetes. 1999;  48 2066-2073
  • 29 Gumieniczek A. Oxidative stress in kidney and liver of alloxan-induced diabetic rabbits: effect of repaglinide.  Acta Diabetol. 2005;  42 75-81
  • 30 Su L, Yin J J, Charles D, Zhou K, Moore J, Yu L. Total phenolic contents, chelating capacities, and radical-scavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf.  Food Chem. 2007;  100 990-997
  • 31 Geoffroy K, Troncy L, Wiernsperger N, Lagarde M, El Bawab S. Glomerular proliferation during early stages of diabetic nephropathy is associated with local increase of sphingosine-1-phosphate levels.  FEBS Lett. 2005;  579 1249-1254

Awanish Mishra

Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research
Punjabi University


Punjab, PIN 147002


Phone: + 91 98 88 13 66 42