Zusammenfassung
Hintergrund: Entwicklung und Beurteilung einer neuen Methode zum On-line Mapping kornealer Strukturen
mittels der konfokalen In-vivo-Laser-Scanning-Mikroskopie. Methode: Die Hornhaut von Probanden (4 Normalprobanden und 2 Patienten nach LASIK) wurde mit
einem softwareseitig modifizierten konfokalen Laser-Scanning-Mikroskop (Heidelberg
Retina Tomograph II in Kombination mit dem Rostock Cornea Modul) untersucht, wobei
die erhaltenen optischen Schnitte on-line bis zu einer maximalen Größe von 3,2 × 3,2
mm (3072 × 3072 Pixel) zweidimensional rekonstruiert wurden. Ergebnisse: Die entwickelte Methode ermöglicht eine On-line-Rekonstruktion und Darstellung von
verschiedenen Hornhautstrukturen (Epithel, subepithelialer Nervenplexus, Stroma, Endothel)
bei Normalprobanden und postoperativen Wundheilungsprozessen bzw. Alterationen des
Gewebes nach LASIK. Qualität und Größe der rekonstruierten Areale sind stark compliance-
und erfahrungsabhängig. Schlussfolgerungen: Das On-line Mapping kornealer Strukturen mittels konfokaler In-vivo-Laser-Scanning-Mikroskopie
erlaubt eine großflächige zweidimensionale Darstellung und Analyse der normalen Anatomie
und pathologischen Befunde der Hornhaut. Die entwickelte Methode ist der etablierten
Off-line-Rekonstruktion bezüglich Bildqualität und Zeitaufwand deutlich überlegen
und bietet ein erhebliches experimentelles und klinisches Potenzial.
Abstract
Purpose: The aim of this study was to design and evaluate online mapping of human corneal
structures by in vivo laser scanning confocal microscopy. Method: Six human corneae (four from healthy volunteers, two after LASIK,) were examined
with confocal microscopy based on the confocal laser scanning microscope type Heidelberg
Retina Tomograph II and Rostock cornea module. In each case an on-line mapping with
max. size up to 3.2 × 3.2 mm (3072 × 3072 pixel) was performed. Results: On-line mapping was performed to demonstrate the structures of the healthy cornea
(epithelium, subepithelial nerve plexus, endothelium) as well as postoperative wound
healing processes after LASIK. The quality and size of the image are considerably
influenced by compliance of the patient and experience of the investigator. Conclusions: On-line mapping of cornea with in vivo confocal microscopy allows one to perform
a large area 2D reconstruction and analyses of normal and pathological cornea. The
presented method is considerably better than existing off-line reconstruction possibilities
in terms of image quality and time consumption and affords an opportunity for further
experimental and clinical studies.
Schlüsselwörter
Konfokale Mikroskopie - Mapping - Hornhaut
Key words
confocal microscopy - mapping - Cornea
Literatur
- 1
Guthoff R F, Zhivov A, Stachs O.
In vivo confocal microscopy, an inner vision of the cornea – a major review.
Clin Experiment Ophthalmol.
2009;
37
100-117
- 2
Jester J V, Petroll W M, Feng W. et al .
Radial keratotomy. 1. The wound healing process and measurement of incisional gape
in two animal models using in vivo confocal microscopy.
Invest Ophthalmol Vis Sci.
1992;
33
3255-3270
- 3
Kaufman S C, Kaufman H E.
How has confocal microscopy helped us in refractive surgery?.
Curr Opin Ophthalmol.
2006;
17
380-388
- 4
Li J, Jester J V, Cavanagh H D. et al .
On-line 3-dimensional confocal imaging in vivo.
Invest Ophthalmol Vis Sci.
2000;
41
2945-2953
- 5
Masters B R, Bohnke M.
Three-dimensional confocal microscopy of the human cornea in vivo.
Ophthalmic Res.
2001;
33
125-135
- 6
Masters B R, Bohnke M.
Three-dimensional confocal microscopy of the living human eye.
Annu Rev Biomed Eng.
2002;
4
69-91
- 7
Masters B R, Farmer M A.
Three-dimensional confocal microscopy and visualization of the in situ cornea.
Comput Med Imaging Graph.
1993;
17
211-219
- 8
Moilanen J A, Vesaluoma M H, Muller L J. et al .
Long-term corneal morphology after PRK by in vivo confocal microscopy.
Invest Ophthalmol Vis Sci.
2003;
44
1064-1069
- 9
Patel D V, McGhee C N.
Mapping of the normal human corneal sub-Basal nerve plexus by in vivo laser scanning
confocal microscopy.
Invest Ophthalmol Vis Sci.
2005;
46
4485-4488
- 10
Patel D V, McGhee C N.
Mapping the corneal sub-basal nerve plexus in keratoconus by in vivo laser scanning
confocal microscopy.
Invest Ophthalmol Vis Sci.
2006;
47
1348-1351
- 11
Patel D V, McGhee C N.
Contemporary in vivo confocal microscopy of the living human cornea using white light
and laser scanning techniques: a major review.
Clin Experiment Ophthalmol.
2007;
35
71-88
- 12
Petroll W M, Yu A, Li J. et al .
A prototype two-detector confocal microscope for in vivo corneal imaging.
Scanning.
2002;
24
163-170
- 13
Rapuano C J, Sugar A, Koch D D. et al .
Intrastromal corneal ring segments for low myopia: a report by the American Academy
of Ophthalmology.
Ophthalmology.
2001;
108
1922-1928
- 14
Scarpa F, Fiorin D, Ruggeri A.
In vivo three-dimensional reconstruction of the cornea from confocal microscopy images.
Conf Proc IEEE Eng Med Biol Soc..
2007;
2007
747-750
- 15
Stachs O, Zhivov A, Kraak R. et al .
Structural-functional Correlations of Corneal Innervation After LASIK and Penetrating
Keratoplasty.
J Cataract Refract Surg.
in press;
- 16
Stachs O, Zhivov A, Kraak R. et al .
In vivo three-dimensional confocal laser scanning microscopy of the epithelial nerve
structure in the human cornea.
Graefes Arch Clin Exp Ophthalmol.
2007;
245
569-575
- 17
Tervo T, Moilanen J.
In vivo confocal microscopy for evaluation of wound healing following corneal refractive
surgery.
Prog Retin Eye Res.
2003;
22
339-358
- 18
Zhivov A, Stachs O, Kraak R. et al .
In vivo confocal microscopy of the ocular surface.
Ocul Surf.
2006;
4
81-93
- 19
Zhivov A, Stachs O, Stave J. et al .
In vivo three-dimensional confocal laser scanning microscopy of corneal surface and
epithelium.
Br J Ophthalmol.
2009;
93
667-672
Dr. Andrey Zhivov
Augenklinik, Universität Rostock
Doberaner Straße 140
18055 Rostock
Telefon: ++ 49/3 81/4 94 85 59
Fax: ++ 49/3 81/4 94 85 02
eMail: andyzhyvov@yahoo.com