Bei der Multiplen Sklerose handelt es sich um eine chronisch–entzündliche Erkrankung
des zentralen Nervensystems mit funktionellen Defiziten vorwiegend aufgrund multipler
demyelinisierender Läsionen unterschiedlichen Alters. Grundkonzept der Diagnosestellung
ist der Nachweis einer Dissemination des Krankheitsprozesses in Bezug auf Ort und
Zeit. Die diagnostischen Kriterien der Multiplen Sklerose wurden wiederholt revidiert.
Der Artikel gibt einen Überblick über verschiedene Kriteriensysteme und diskutiert
die derzeit verwendeten McDonald–Kriterien in ihrer revidierten Fassung von 2005.
Die Diagnosestellung der Multiplen Sklerose beruht auf dem Ausschluss anderer entzündlicher,
infektiöser, granulomatöser und hereditärer Erkrankungen, die nachfolgend skizziert
werden. Ein klinischer Abklärungsalgorithmus bei Verdacht auf Multiple Sklerose wird
vorgestellt. Im Rahmen der Diagnosestellung ist die Liquoranalyse essenziell, charakteristische
Liquorbefunde und ihre Bedeutung werden diskutiert.
Multiple Sclerosis (MS) is defined as a chronic inflammatory disease of the central
nervous system with functional deficits predominantly due to multiple demyelinated
and axonal lesions of different age. The basic concept of diagnosis relies on confirming
dissemination of the disease process in time and space. The diagnostic criteria of
MS were revised several times, the article gives an overview over different sets of
diagnostic criteria and discusses the most recent version of the McDonald criteria,
2005. Several inflammatory, infectious, granulomatous and hereditary diseases may
resemble MS and have to be excluded in the diagnostic process. An algorithmic approach
to patients with suspected MS is described. In diagnosing MS analysis of the cerebrospinal
fluid (CSF) plays an essential role, characteristic findings in CSF and their significance
are discussed.
Key words
Multiple sclerosis - diagnostic criteria - cerebrospinal fluid analysis
Literatur
- 1
Allison RS, Millar JH..
Prevalence of disseminated sclerosis in Northern Ireland.
Ulster Med J.
1954;
23
1-27
- 2
Andersson M, Alvarez–Cermeño J, Bernardi G. et al. .
Cerebrospinal fluid in the diagnosis of multiple sclerosis: a consensus report.
J Neurol Neurosurg Psychiatry.
1994;
57
897-902
- 3
Annunziata P, Giorgio A, De Santi L. et al. .
Absence of cerebrospinal fluid oligoclonal bands is associated with delayed disability
progression in relapsing–remitting MS patients treated with interferon–beta.
J Neurol Sci.
2006;
244
97-102
- 4
Baranzini SE, Jeong MC, Butunoi C. et al. .
B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions.
J Immunol.
1999;
163
5133-5144
- 5
Barkhof F, Rocca M, Francis G. et al. .
Validation of diagnostic magnetic resonance imaging criteria for multiple sclerosis
and response to interferon beta1a.
Ann Neurol.
2003;
53
718-724
- 6
Charil A, Yousry TA, Rovaris M. et al. .
MRI and the diagnosis of multiple sclerosis: expanding the concept of „no better explanation”.
Lancet Neurol.
2006;
5
841-852
- 7
Cole SR, Beck RW, Moke PS. et al. .
The predictive value of CSF oligoclonal banding for MS 5 years after optic neuritis.
Optic Neuritis Study Group.
Neurology.
1998;
51
885-887
- 8
Colombo M, Dono M, Gazzola P. et al. .
Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple
sclerosis patients.
J Immunol.
2000;
164
2782-2789
- 9
Comi G, Filippi M, Barkhof F. et al. .
Effect of early interferon treatment on conversion to definite multiple sclerosis:
a randomised study.
Lancet.
2001;
357
1576-1582
- 10
Dalton CM, Brex PA, Miszkiel KA. et al. .
Application of the new McDonald criteria to patients with clinically isolated syndromes
suggestive of multiple sclerosis.
Ann Neurol.
2002;
52
47-53
- 11
Dujmovic I, Mesaros S. et al. .
Primary progressive multiple sclerosis: clinical and paraclinical characteristics
with application of the new diagnostic criteria.
Eur J Neurol.
2004;
11
439-444
- 12
Fassas A, Passweg JR, Pekmezovic T. et al. .
Hematopoietic stem cell transplantation for multiple sclerosis. A retrospective multicenter
study.
J Neurol.
2002;
249
1088-1097
- 13
Felgenhauer K, Reiber H..
The diagnostic significance of antibody specificity indices in multiple sclerosis
and herpes virus induced diseases of the nervous system.
Clin Investig.
1992;
70
28-37
- 14
Filippi M, Rovaris M, Inglese M. et al. .
Interferon beta–1a for brain tissue loss in patients at presentation with syndromes
suggestive of multiple sclerosis: a randomised, double–blind, placebo–controlled trial.
Lancet.
2004;
364
1489-1496
- 15
Filippini G, Comi GC, Cosi V. et al. .
Sensitivities and predictive values of paraclinical tests for diagnosing multiple
sclerosis.
J Neurol.
1994;
241
132-137
- 16
Freedman MS, Thompson EJ, Deisenhammer F. et al. .
Recommended standard of cerebrospinal fluid analysis in the diagnosis of multiple
sclerosis: a consensus statement.
Arch Neurol.
2005;
62
865-870
- 17
Giovannoni G, Kieseier B, Hartung HP..
Correlating immunological and magnetic resonance imaging markers of disease activity
in multiple sclerosis.
J Neurol Neurosurg Psychiatry.
1998;
64
- 18
Hickey WF..
Migration of hematogenous cells through the blood–brain barrier and the initiation
of CNS inflammation.
Brain Pathol.
1991;
1
97-105
- 19
Jacobs LD, Beck RW, Simon JH. et al. .
Intramuscular interferon beta–1a therapy initiated during a first demyelinating event
in multiple sclerosis.
N Engl J Med.
2000;
343
898-904
- 20
Kappos L, Polman CH, Freedman MS. et al. .
Treatment with interferon beta–1b delays conversion to clinically definite and McDonald
MS in patients with clinically isolated syndromes.
Neurology.
2006;
67
1242-1249
- 21 Keren FK.. College of American Pathologists. Cerebrospinal Fluid Survey M–B: Participant
Summary Report. Northfield,IL: College of American Pathologists 2002: 6
- 22
Korteweg T, Tintoré M, Uitdehaag B. et al. .
MRI criteria for dissemination in space in patients with clinically isolated syndromes:
a multicentre follow–up study.
Lancet Neurol.
2006;
5
221-227
- 23
Lefvert AK, Link H..
IgG production within the central nervous system: a critical review of proposed formulae.
Ann Neurol.
1985;
17
13-20
- 24
Link H, Tibbling G..
Principles of albumin and IgG analyses in neurological disorders. III. Evaluation
of IgG synthesis within the central nervous system in multiple sclerosis.
Scand J Clin Lab Invest.
1977;
37
397-401
- 25
Link H, Huang YM..
Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology
and clinical usefulness.
J Neuroimmunol.
2006;
180
17-28
- 26
Mancardi GL, Saccardi R, Filippi M. et al. .
Autologous hematopoietic stem cell transplantation suppresses Gd–enhanced MRI activity
in MS.
Neurology.
2001;
57
62-68
- 27
Martinelli V, Comi G, Filippi M. et al. .
Paraclinical tests in acute–onset optic neuritis: basal data and results of a short
follow–up.
Acta Neurol Scand.
1991;
84
231-236
- 28
McDonald WI, Compston A, Edan G. et al. .
Recommended diagnostic criteria for multiple sclerosis: guidelines from the International
Panel on the diagnosis of multiple sclerosis.
Ann Neurol.
2001;
50
121-127
- 29
Miller DH, Ormerod IE, Rudge P. et al. .
The early risk of multiple sclerosis following isolated acute syndromes of the brainstem
and spinal cord.
Ann Neurol.
1989;
26
635-639
- 30
Ohman S, Ernerudh J, Forsberg P. et al. .
Comparison of seven formulae and isoelectrofocusing for determination of intrathecally
produced IgG in neurological diseases.
Ann Clin Biochem.
1992;
29
405-410
- 31
Polman CH, Reingold SC, Edan G. et al. .
Diagnostic criteria for multiple sclerosis: 2005 revisions to the „McDonald Criteria”.
Ann Neurol.
2005;
58
840-846
- 32
Poser CM, Paty DW, Scheinberg L. et al. .
New diagnostic criteria for multiple sclerosis: guidelines for research protocols.
Ann Neurol.
1983;
13
227-231
- 33
Qin Y, Duquette P, Zhang Y. et al. .
Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal
fluid in multiple sclerosis.
J Clin Invest.
1998;
102
1045-1050
- 34
Reiber H, Felgenhauer K..
Protein transfer at the blood cerebrospinal fluid barrier and the quantitation of
the humoral immune response within the central nervous system.
Clin Chim Acta.
1987;
163
319-328
- 35
Reiber H..
Flow rate of cerebrospinal fluid (CSF) – a concept common to normal blood–CSF barrier
function and to dysfunction in neurological diseases.
J Neurol Sci.
1994;
122
189-203
- 36
Reiber H..
Die diagnostische Bedeutung neuroimmunologischer Reaktionsmuster im Liquor cerebrospinalis.
Lab Med.
1995;
19
444-462
- 37
Reiber H, Ungefehr S, Jacobi C..
The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis.
Mult Scler.
1998;
4
111-117
- 38
Reiber H, Peter JB..
Cerebrospinal fluid analysis: disease–related data patterns and evaluation programs.
J Neurol Sci.
2001;
184
101-122
- 39
Roström B, Link H, Norrby E..
Antibodies in oligoclonal immunoglobulins in CSF from patients with acute cerebrovascular
disease.
Acta Neurol Scand.
1981;
64
225-240
- 40
Schumacker GA, Beebe G, Kibler RF. et al. .
Problems of experimental trials of therapy in multiple sclerosis.
Ann NY Acad Sci.
1965;
122
552-568
- 41
Sindic CJ..
CSF analysis in multiple sclerosis.
Acta Neurol Belg.
1994;
94
103-111
- 42
Sindic CJ, Van Antwerpen MP, Goffette S..
The intrathecal humoral immune response: laboratory analysis and clinical relevance.
Clin Chem Lab Med.
2001;
39
333-340
- 43
Söderström M, Ya–Ping J, Hillert J, Link H..
Optic neuritis: prognosis for multiple sclerosis from MRI, CSF, and HLA findings.
Neurology.
1998;
50
708-714
- 44
Stachan R, Wurster U..
Frequency of virus specific antibodies in clinically definite multiple sclerosis versus
acute monosymptomatic opticus neuritis.
J lab Med.
1996;
20
515
- 45
Stendahl–Brodin L, Link H..
Relation between benign course of multiple sclerosis and low–grade humoral immune
response in cerebrospinal fluid.
J Neurol Neurosurg Psychiatry.
1980;
43
102-105
- 46 Thompson EJ.. Proteins of the Cerebrospinal Fluid. New York: Elsevier, Academic
Press 2005
- 47
Thompson EJ, Keir G..
Laboratory investigation of cerebrospinal fluid proteins.
Ann Clin Biochem.
1990;
27
425-435
- 48
Thompson EJ..
Cerebrospinal fluid.
J Neurol Neurosurg Psychiatry.
1995;
59
349-357
- 49
Tintoré M, Rovira A, Río J. et al. .
New diagnostic criteria for multiple sclerosis: application in first demyelinating
episode.
Neurology.
2003;
60
27-30
- 50
Tourtellotte W..
On cerebrospinal fluid immunoglobulin–G (IgG) quotients in multiple sclerosis and
other diseases. A review and a new formula to estimate the amount of IgG synthesized
per day by the central nervous system.
J Neurol Sci.
1970;
10
279-304
- 51
Tourtellotte WW, Potvin AR, Fleming JO. et al. .
Multiple sclerosis: measurement and validation of central nervous system IgG synthesis
rate.
Neurology.
1980;
30
240-244
- 52
Tumani H, Tourtellotte WW, Peter JB, Felgenhauer K..
Acute optic neuritis: combined immunological markers and magnetic resonance imaging
predict subsequent development of multiple sclerosis. The Optic Neuritis Study Group.
J Neurol Sci.
1998;
155
44-49
- 53
Wiendl H, Kieseier BC, Gold R. et al. .
Multiple Sklerose – Revision der neuen McDonald–Diagnosekriterien.
Nervenarzt.
2006;
1235
1235-1245
- 54
Wolinsky JS. PROMiSe Study Group. .
The diagnosis of primary progressive multiple sclerosis.
J Neurol Sci.
2003;
206
145-152
- 55
Wurster U..
Protein gradients in the cerebrospinal fluid and the calculation of intracerebral
IgG synthesis.
J Neuroimmunol.
1988;
20
233-235
- 56
Wurster U, Rinke M..
Does glycosilation contribute to the oligoclonal appearance of intracerebrally synthesized
IgG?.
Can J Neurol Sci.
1993;
4
- 57 Wurster U.. Elektrophoreseverfahren – Nachweis und Bedeutung von oligoklonalen
Banden. In: Zettl K, Lehmitz R, and Eilhard M, Hrsg. Klinische Liquordiagnostik. 2.
Aufl. Berlin: de Gruyter 2005: 208-238
- 58
Zeman AZ, Kidd D, McLean BN. et al. .
A study of oligoclonal band negative multiple sclerosis.
J Neurol Neurosurg Psychiatry.
1996;
60
27-30
Korrespondenz
Dr. med. Regina Schlaeger
Universitätsspital Basel Abteilung für Neurologie
Petersgraben 4
4031 Basel (Schweiz)
Email: schlaegerr@uhbs.ch