Subscribe to RSS
DOI: 10.1055/a-2753-5318
Platelet-Endothelial Cell–Cell Interactions at the Onset of Atherosclerosis: Mechanisms and Implications
Authors

Abstract
Platelets are primarily known for their roles in hemostasis and thrombosis; however, accumulating evidence highlights their significant contribution to endothelial dysfunction and the development of atherosclerosis. Upon adhering to the endothelium, platelets engage in reciprocal activation through a variety of membrane receptors and adhesion molecules, initiating inflammatory and immune responses that drive early atherogenic processes. Several studies have shown that platelet receptors traditionally associated with hemostasis also mediate adhesion to endothelial cells. In addition, recent research has uncovered novel molecular players and mechanisms involved in platelet tethering to the endothelium. This review explores the mechanisms underlying endothelial-platelet interactions during the early stages of atherosclerosis. We examine how platelet adhesion to endothelial cells contributes to the formation of atherosclerotic plaques and discuss potential therapeutic strategies aimed at disrupting these pro-atherogenic interactions. In particular, we discuss emerging anti-platelet agents that selectively target receptors involved in platelet-endothelial cell interactions, offering promising translational approaches to prevent or slow the onset of atherosclerosis.
Keywords
atherosclerosis - endothelial dysfunction - platelet–endothelial interactions - antiplatelet agents - platelet adhesion‡ These authors contributed equally to this article.
Publication History
Received: 14 August 2025
Accepted after revision: 22 November 2025
Accepted Manuscript online:
25 November 2025
Article published online:
10 December 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 van der Meijden PEJ, Heemskerk JWM. Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol 2019; 16 (03) 166-179
- 2 Ruggeri ZM, Mendolicchio GL. Adhesion mechanisms in platelet function. Circ Res 2007; 100 (12) 1673-1685
- 3 Vilahur G, Fuster V. Interplay between platelets and coagulation: from protective haemostasis to pathological arterial thrombosis. Eur Heart J 2025; 46 (05) 413-423
- 4 Camera M, Toschi V, Brambilla M. et al. The role of tissue factor in atherothrombosis and coronary artery disease: insights into platelet tissue factor. Semin Thromb Hemost 2015; 41 (07) 737-746
- 5 Brambilla M. et al. Cell surface platelet tissue factor expression: regulation by P2Y12 and link to residual platelet reactivity. Arterioscler Thromb Vasc Biol 2023; 43 (10) 2042-2057
- 6 Broos K, Feys HB, De Meyer SF, Vanhoorelbeke K, Deckmyn H. Platelets at work in primary hemostasis. Blood Rev 2011; 25 (04) 155-167
- 7 Etulain J, Schattner M. Glycobiology of platelet-endothelial cell interactions. Glycobiology 2014; 24 (12) 1252-1259
- 8 Neubauer K, Zieger B. Endothelial cells and coagulation. Cell Tissue Res 2022; 387 (03) 391-398
- 9 Baaten CCFMJ, Nagy M, Bergmeier W, Spronk HMH, van der Meijden PEJ. Platelet biology and function: plaque erosion vs. rupture. Eur Heart J 2024; 45 (01) 18-31
- 10 Massberg S, Brand K, Grüner S. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196 (07) 887-896
- 11 Huo Y, Schober A, Forlow SB. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003; 9 (01) 61-67
- 12 Gawaz M. Platelets in the onset of atherosclerosis. Blood Cells Mol Dis 2006; 36 (02) 206-210
- 13 Shim CY, Liu YN, Atkinson T. et al. Molecular imaging of platelet-endothelial interactions and endothelial von Willebrand factor in early and mid-stage atherosclerosis. Circ Cardiovasc Imaging 2015; 8 (07) e002765
- 14 Reitsma S, Oude Egbrink MG, Heijnen VV. et al. Endothelial glycocalyx thickness and platelet-vessel wall interactions during atherogenesis. Thromb Haemost 2011; 106 (05) 939-946
- 15 Brown E, Ozawa K, Moccetti F. et al. Arterial platelet adhesion in atherosclerosis-prone arteries of obese, insulin-resistant nonhuman primates. J Am Heart Assoc 2021; 10 (09) e019413
- 16 Gimbrone Jr MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118 (04) 620-636
- 17 Fortini F. et al. Well-known and novel players in endothelial dysfunction: updates on a notch(ed) landscape. Biomedicines 2021; 9 (08) 997
- 18 Gimbrone Jr MA, García-Cardeña G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol 2013; 22 (01) 9-15
- 19 Meza D, Musmacker B, Steadman E, Stransky T, Rubenstein DA, Yin W. Endothelial cell biomechanical responses are dependent on both fluid shear stress and tensile strain. Cell Mol Bioeng 2019; 12 (04) 311-325
- 20 Mack JJ, Mosqueiro TS, Archer BJ. et al. NOTCH1 is a mechanosensor in adult arteries. Nat Commun 2017; 8 (01) 1620
- 21 Aquila G, Morelli MB, Vieceli Dalla Sega F. et al. Heart rate reduction with ivabradine in the early phase of atherosclerosis is protective in the endothelium of ApoE-deficient mice. J Physiol Pharmacol 2018; 69 (01) 35-52
- 22 Vieceli Dalla Sega F, Aquila G, Fortini F. et al. Context-dependent function of ROS in the vascular endothelium: the role of the Notch pathway and shear stress. Biofactors 2017; 43 (04) 475-485
- 23 Coon BG, Timalsina S, Astone M. et al. A mitochondrial contribution to anti-inflammatory shear stress signaling in vascular endothelial cells. J Cell Biol 2022; 221 (07) e202109144
- 24 Nasr M, Fay A, Lupieri A. et al. PI3KCIIα-dependent autophagy program protects from endothelial dysfunction and atherosclerosis in response to low shear stress in mice. Arterioscler Thromb Vasc Biol 2024; 44 (03) 620-634
- 25 Borén J, Chapman MJ, Krauss RM. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2020; 41 (24) 2313-2330
- 26 Cimaglia P, Fortini F, Vieceli Dalla Sega F. et al. Relationship between PCSK9 and endothelial function in patients with acute myocardial infarction. Nutr Metab Cardiovasc Dis 2022; 32 (09) 2105-2111
- 27 Punch E, Klein J, Diaba-Nuhoho P, Morawietz H, Garelnabi M. Effects of PCSK9 targeting: alleviating oxidation, inflammation, and atherosclerosis. J Am Heart Assoc 2022; 11 (03) e023328
- 28 Grego A, Fernandes C, Fonseca I. et al. Endothelial dysfunction in cardiovascular diseases: mechanisms and in vitro models. Mol Cell Biochem 2025; 480 (08) 4671-4695
- 29 Horinouchi T, Mazaki Y, Terada K, Miwa S. Cigarette smoke extract and its cytotoxic factor acrolein inhibit nitric oxide production in human vascular endothelial cells. Biol Pharm Bull 2020; 43 (11) 1804-1809
- 30 Barua RS, Ambrose JA, Srivastava S, DeVoe MC, Eales-Reynolds LJ. Reactive oxygen species are involved in smoking-induced dysfunction of nitric oxide biosynthesis and upregulation of endothelial nitric oxide synthase: an in vitro demonstration in human coronary artery endothelial cells. Circulation 2003; 107 (18) 2342-2347
- 31 Neubauer H, Setiadi P, Pinto A. et al. Upregulation of platelet CD40, CD40 ligand (CD40L) and P-Selectin expression in cigarette smokers: a flow cytometry study. Blood Coagul Fibrinolysis 2009; 20 (08) 694-698
- 32 Golbidi S, Edvinsson L, Laher I. Smoking and endothelial dysfunction. Curr Vasc Pharmacol 2020; 18 (01) 1-11
- 33 Yang DR, Wang MY, Zhang CL, Wang Y. Endothelial dysfunction in vascular complications of diabetes: a comprehensive review of mechanisms and implications. Front Endocrinol (Lausanne) 2024; 15: 1359255
- 34 Mazrouei S, Sharifpanah F, Caldwell RW. et al. Regulation of MAP kinase-mediated endothelial dysfunction in hyperglycemia via arginase I and eNOS dysregulation. Biochim Biophys Acta Mol Cell Res 2019; 1866 (09) 1398-1411
- 35 González P, Lozano P, Ros G, Solano F. Hyperglycemia and oxidative stress: an integral, updated and critical overview of their metabolic interconnections. Int J Mol Sci 2023; 24 (11) 9352
- 36 Adamopoulos C, Piperi C, Gargalionis AN. et al. Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2-NF-κB and JNK-AP-1 signaling pathways. Cell Mol Life Sci 2016; 73 (08) 1685-1698
- 37 Iwasaki H, Okamoto R, Kato S. et al. High glucose induces plasminogen activator inhibitor-1 expression through Rho/Rho-kinase-mediated NF-kappaB activation in bovine aortic endothelial cells. Atherosclerosis 2008; 196 (01) 22-28
- 38 Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol 2019; 16 (12) 727-744
- 39 Döring Y, Soehnlein O, Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res 2017; 120 (04) 736-743
- 40 Vieceli Dalla Sega F, Palumbo D, Fortini F. et al. Transcriptomic profiling of calcified aortic valves in clonal hematopoiesis of indeterminate potential carriers. Sci Rep 2022; 12 (01) 20400
- 41 Papa V, Marracino L, Fortini F. et al. Translating evidence from clonal hematopoiesis to cardiovascular disease: a systematic review. J Clin Med 2020; 9 (08) 2480
- 42 Akhiyat N, Lasho T, Ganji M. et al. Clonal hematopoiesis of indeterminate potential is associated with coronary microvascular dysfunction in early nonobstructive coronary artery disease. Arterioscler Thromb Vasc Biol 2023; 43 (05) 774-783
- 43 Kuo L, Hein TW. Vasomotor regulation of coronary microcirculation by oxidative stress: role of arginase. Front Immunol 2013; 4: 237
- 44 Schmitt MM, Megens RT, Zernecke A. et al. Endothelial junctional adhesion molecule-a guides monocytes into flow-dependent predilection sites of atherosclerosis. Circulation 2014; 129 (01) 66-76
- 45 Chen J, Chung DW. Inflammation, von Willebrand factor, and ADAMTS13. Blood 2018; 132 (02) 141-147
- 46 Roy C, Tabiasco J, Caillon A. et al. Loss of vascular expression of nucleoside triphosphate diphosphohydrolase-1/CD39 in hypertension. Purinergic Signal 2018; 14 (01) 73-82
- 47 Stokes KY, Granger DN. Platelets: a critical link between inflammation and microvascular dysfunction. J Physiol 2012; 590 (05) 1023-1034
- 48 Dong A, Caicedo J, Han SG. et al. Enhanced platelet reactivity and thrombosis in Apoe-/- mice exposed to cigarette smoke is attenuated by P2Y12 antagonism. Thromb Res 2010; 126 (04) e312-e317
- 49 Przygodzki T, Luzak B, Kassassir H. et al. Diabetes and hyperglycemia affect platelet GPIIIa expression. effects on adhesion potential of blood platelets from diabetic patients under in vitro flow conditions. Int J Mol Sci 2020; 21 (09) 3222
- 50 Ruggeri ZM, Orje JN, Habermann R, Federici AB, Reininger AJ. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 2006; 108 (06) 1903-1910
- 51 Bültmann A, Li Z, Wagner S. et al. Impact of glycoprotein VI and platelet adhesion on atherosclerosis–a possible role of fibronectin. J Mol Cell Cardiol 2010; 49 (03) 532-542
- 52 Schönberger T, Ziegler M, Borst O. et al. The dimeric platelet collagen receptor GPVI-Fc reduces platelet adhesion to activated endothelium and preserves myocardial function after transient ischemia in mice. Am J Physiol Cell Physiol 2012; 303 (07) C757-C766
- 53 Frenette PS, Johnson RC, Hynes RO, Wagner DD. Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc Natl Acad Sci U S A 1995; 92 (16) 7450-7454
- 54 Frenette PS, Moyna C, Hartwell DW, Lowe JB, Hynes RO, Wagner DD. Platelet-endothelial interactions in inflamed mesenteric venules. Blood 1998; 91 (04) 1318-1324
- 55 da Costa Martins P, García-Vallejo JJ, van Thienen JV. et al. P-selectin glycoprotein ligand-1 is expressed on endothelial cells and mediates monocyte adhesion to activated endothelium. Arterioscler Thromb Vasc Biol 2007; 27 (05) 1023-1029
- 56 Massberg S, Enders G, Leiderer R. et al. Platelet-endothelial cell interactions during ischemia/reperfusion: the role of P-selectin. Blood 1998; 92 (02) 507-515
- 57 Burger PC, Wagner DD. Platelet P-selectin facilitates atherosclerotic lesion development. Blood 2003; 101 (07) 2661-2666
- 58 Schober A, Manka D, von Hundelshausen P. et al. Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury. Circulation 2002; 106 (12) 1523-1529
- 59 Dole VS, Bergmeier W, Patten IS, Hirahashi J, Mayadas TN, Wagner DD. PSGL-1 regulates platelet P-selectin-mediated endothelial activation and shedding of P-selectin from activated platelets. Thromb Haemost 2007; 98 (04) 806-812
- 60 Dole VS, Bergmeier W, Mitchell HA, Eichenberger SC, Wagner DD. Activated platelets induce Weibel-Palade-body secretion and leukocyte rolling in vivo: role of P-selectin. Blood 2005; 106 (07) 2334-2339
- 61 Lopes da Silva M, Cutler DF. von Willebrand factor multimerization and the polarity of secretory pathways in endothelial cells. Blood 2016; 128 (02) 277-285
- 62 Wu MD, Atkinson TM, Lindner JR. Platelets and von Willebrand factor in atherogenesis. Blood 2017; 129 (11) 1415-1419
- 63 André P, Denis CV, Ware J. et al. Platelets adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins. Blood 2000; 96 (10) 3322-3328
- 64 Huck V, Schneider MF, Gorzelanny C, Schneider SW. The various states of von Willebrand factor and their function in physiology and pathophysiology. Thromb Haemost 2014; 111 (04) 598-609
- 65 Theilmeier G, Michiels C, Spaepen E. et al. Endothelial von Willebrand factor recruits platelets to atherosclerosis-prone sites in response to hypercholesterolemia. Blood 2002; 99 (12) 4486-4493
- 66 Doddapattar P, Dhanesha N, Chorawala MR. et al. Endothelial cell-derived von Willebrand factor, but not platelet-derived, promotes atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2018; 38 (03) 520-528
- 67 Meyer dos Santos S, Klinkhardt U, Scholich K. et al. The CX3C chemokine fractalkine mediates platelet adhesion via the von Willebrand receptor glycoprotein Ib. Blood 2011; 117 (18) 4999-5008
- 68 Schulz C, Schäfer A, Stolla M. et al. Chemokine fractalkine mediates leukocyte recruitment to inflammatory endothelial cells in flowing whole blood: a critical role for P-selectin expressed on activated platelets. Circulation 2007; 116 (07) 764-773
- 69 Methia N, André P, Denis CV, Economopoulos M, Wagner DD. Localized reduction of atherosclerosis in von Willebrand factor-deficient mice. Blood 2001; 98 (05) 1424-1428
- 70 Gandhi C, Khan MM, Lentz SR, Chauhan AK. ADAMTS13 reduces vascular inflammation and the development of early atherosclerosis in mice. Blood 2012; 119 (10) 2385-2391
- 71 Ozawa K, Muller MA, Varlamov O. et al. Proteolysis of Von Willebrand factor influences inflammatory endothelial activation and vascular compliance in atherosclerosis. JACC Basic Transl Sci 2020; 5 (10) 1017-1028
- 72 Möller K, Adolph O, Grünow J. et al. Mechanism and functional impact of CD40 ligand-induced von Willebrand factor release from endothelial cells. Thromb Haemost 2015; 113 (05) 1095-1108
- 73 Huang J, Li X, Shi X. et al. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol 2019; 12 (01) 26
- 74 Bombeli T, Schwartz BR, Harlan JM. Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha. J Exp Med 1998; 187 (03) 329-339
- 75 May AE, Kälsch T, Massberg S, Herouy Y, Schmidt R, Gawaz M. Engagement of glycoprotein IIb/IIIa (alpha(IIb)beta3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells. Circulation 2002; 106 (16) 2111-2117
- 76 Massberg S, Schürzinger K, Lorenz M. et al. Platelet adhesion via glycoprotein IIb integrin is critical for atheroprogression and focal cerebral ischemia: an in vivo study in mice lacking glycoprotein IIb. Circulation 2005; 112 (08) 1180-1188
- 77 Stellos K, Sauter R, Fahrleitner M. et al. Binding of oxidized low-density lipoprotein on circulating platelets is increased in patients with acute coronary syndromes and induces platelet adhesion to vascular wall in vivo–brief report. Arterioscler Thromb Vasc Biol 2012; 32 (08) 2017-2020
- 78 Chen L, Bai Q, Tang R. et al. GPIIb/IIIa-ICAM-1-mediated platelet-endothelial adhesion exacerbates pulmonary hypertension. Am J Respir Cell Mol Biol 2025; 73 (03) 383-395
- 79 Babinska A, Kedees MH, Athar H. et al. F11-receptor (F11R/JAM) mediates platelet adhesion to endothelial cells: role in inflammatory thrombosis. Thromb Haemost 2002; 88 (05) 843-850
- 80 Azari BM, Marmur JD, Salifu MO, Ehrlich YH, Kornecki E, Babinska A. Transcription and translation of human F11R gene are required for an initial step of atherogenesis induced by inflammatory cytokines. J Transl Med 2011; 9: 98
- 81 Zernecke A, Liehn EA, Fraemohs L. et al. Importance of junctional adhesion molecule-A for neointimal lesion formation and infiltration in atherosclerosis-prone mice. Arterioscler Thromb Vasc Biol 2006; 26 (02) e10-e13
- 82 Karshovska E, Zhao Z, Blanchet X. et al. Hyperreactivity of junctional adhesion molecule A-deficient platelets accelerates atherosclerosis in hyperlipidemic mice. Circ Res 2015; 116 (04) 587-599
- 83 Zhao Z, Vajen T, Karshovska E. et al. Deletion of junctional adhesion molecule A from platelets increases early-stage neointima formation after wire injury in hyperlipidemic mice. J Cell Mol Med 2017; 21 (08) 1523-1531
- 84 Kamola P, Babinska A, Przygodzki T. F11R/JAM-A: why do platelets express a molecule which is also present in tight junctions?. Platelets 2023; 34 (01) 2214618
- 85 Rath D, Rapp V, Schwartz J. et al. Homophilic interaction between transmembrane-JAM-A and soluble JAM-A regulates thrombo-inflammation: implications for coronary artery disease. JACC Basic Transl Sci 2022; 7 (05) 445-461
- 86 Vieceli Dalla Sega F, Fortini F, Licastro D. et al. Serum from COVID-19 patients promotes endothelial cell dysfunction through protease-activated receptor 2. Inflamm Res 2024; 73 (01) 117-130
- 87 Peach CJ, Edgington-Mitchell LE, Bunnett NW, Schmidt BL. Protease-activated receptors in health and disease. Physiol Rev 2023; 103 (01) 717-785
- 88 Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 1999; 103 (06) 879-887
- 89 Austin KM, Covic L, Kuliopulos A. Matrix metalloproteases and PAR1 activation. Blood 2013; 121 (03) 431-439
- 90 Momi S, Falcinelli E, Petito E, Ciarrocca Taranta G, Ossoli A, Gresele P. Matrix metalloproteinase-2 on activated platelets triggers endothelial PAR-1 initiating atherosclerosis. Eur Heart J 2022; 43 (06) 504-514
- 91 Rana R, Huang T, Koukos G. et al. Noncanonical matrix metalloprotease 1-protease-activated receptor 1 signaling drives progression of atherosclerosis. Arterioscler Thromb Vasc Biol 2018; 38 (06) 1368-1380
- 92 Kazemi N, Bordbar A, Bavarsad SS, Ghasemi P, Bakhshi M, Rezaeeyan H. Molecular insights into the relationship between platelet activation and endothelial dysfunction: molecular approaches and clinical practice. Mol Biotechnol 2024; 66 (05) 932-947
- 93 Semenov AV, Romanov YA, Loktionova SA. et al. Production of soluble P-selectin by platelets and endothelial cells. Biochemistry (Mosc) 1999; 64 (11) 1326-1335
- 94 Sommer P, Schreinlechner M, Noflatscher M. et al. Increasing soluble P-selectin levels predict higher peripheral atherosclerotic plaque progression. J Clin Med 2023; 12 (20) 6430
- 95 Kisucka J, Chauhan AK, Zhao BQ. et al. Elevated levels of soluble P-selectin in mice alter blood-brain barrier function, exacerbate stroke, and promote atherosclerosis. Blood 2009; 113 (23) 6015-6022
- 96 Bielinski SJ, Berardi C, Decker PA. et al. P-selectin and subclinical and clinical atherosclerosis: the multi-ethnic study of atherosclerosis (MESA). Atherosclerosis 2015; 240 (01) 3-9
- 97 Cognasse F, Duchez AC, Audoux E. et al. Platelets as key factors in inflammation: focus on CD40L/CD40. Front Immunol 2022; 13: 825892
- 98 Bikfalvi A. Platelet factor 4: an inhibitor of angiogenesis. Semin Thromb Hemost 2004; 30 (03) 379-385
- 99 Gray AL, Karlsson R, Roberts ARE. et al. Chemokine CXCL4 interactions with extracellular matrix proteoglycans mediate widespread immune cell recruitment independent of chemokine receptors. Cell Rep 2023; 42 (01) 111930
- 100 von Hundelshausen P, Weber KS, Huo Y. et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 2001; 103 (13) 1772-1777
- 101 Costa RM, Cerqueira DM, Bruder-Nascimento A. et al. Role of the CCL5 and its receptor, CCR5, in the genesis of aldosterone-induced hypertension, vascular dysfunction, and end-organ damage. Hypertension 2024; 81 (04) 776-786
- 102 Gawaz M, Brand K, Dickfeld T. et al. Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through an interleukin-1-dependent mechanism. Implications for atherogenesis. Atherosclerosis 2000; 148 (01) 75-85
- 103 Hawrylowicz CM, Howells GL, Feldmann M. Platelet-derived interleukin 1 induces human endothelial adhesion molecule expression and cytokine production. J Exp Med 1991; 174 (04) 785-790
- 104 Badimon L, Vilahur G, Rocca B, Patrono C. The key contribution of platelet and vascular arachidonic acid metabolism to the pathophysiology of atherothrombosis. Cardiovasc Res 2021; 117 (09) 2001-2015
- 105 Eckenstaler R, Benndorf RA. Insights into the expression, structure, and function of the thromboxane A2 receptor in vascular biology. ACS Pharmacol Transl Sci 2025; 8 (09) 2887-2907
- 106 Friedman EA, Ogletree ML, Haddad EV, Boutaud O. Understanding the role of prostaglandin E2 in regulating human platelet activity in health and disease. Thromb Res 2015; 136 (03) 493-503
- 107 Eckenstaler R, Ripperger A, Hauke M. et al. A thromboxane A2 receptor-driven COX-2-dependent feedback loop that affects endothelial homeostasis and angiogenesis. Arterioscler Thromb Vasc Biol 2022; 42 (04) 444-461
- 108 Duerschmied D, Suidan GL, Demers M. et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood 2013; 121 (06) 1008-1015
- 109 Mammadova-Bach E, Mauler M, Braun A, Duerschmied D. Autocrine and paracrine regulatory functions of platelet serotonin. Platelets 2018; 29 (06) 541-548
- 110 Lugo-Gavidia LM, Burger D, Matthews VB. et al. Role of microparticles in cardiovascular disease: implications for endothelial dysfunction, thrombosis, and inflammation. Hypertension 2021; 77 (06) 1825-1844
- 111 Rondina MT, Weyrich AS, Zimmerman GA. Platelets as cellular effectors of inflammation in vascular diseases. Circ Res 2013; 112 (11) 1506-1519
- 112 Rolling CC, Barrett TJ, Berger JS. Platelet-monocyte aggregates: molecular mediators of thromboinflammation. Front Cardiovasc Med 2023; 10: 960398
- 113 Chimen M, Evryviadou A, Box CL. et al. Appropriation of GPIbα from platelet-derived extracellular vesicles supports monocyte recruitment in systemic inflammation. Haematologica 2020; 105 (05) 1248-1261
- 114 Wang J, Zhang S, Jin Y, Qin G, Yu L, Zhang J. Elevated levels of platelet-monocyte aggregates and related circulating biomarkers in patients with acute coronary syndrome. Int J Cardiol 2007; 115 (03) 361-365
- 115 van Gils JM, Zwaginga JJ, Hordijk PL. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J Leukoc Biol 2009; 85 (02) 195-204
- 116 Ehlers R, Ustinov V, Chen Z. et al. Targeting platelet-leukocyte interactions: identification of the integrin Mac-1 binding site for the platelet counter receptor glycoprotein Ibalpha. J Exp Med 2003; 198 (07) 1077-1088
- 117 Patko Z, Csaszar A, Acsady G, Peter K, Schwarz M. Roles of Mac-1 and glycoprotein IIb/IIIa integrins in leukocyte-platelet aggregate formation: stabilization by Mac-1 and inhibition by GpIIb/IIIa blockers. Platelets 2012; 23 (05) 368-375
- 118 Schulz C, von Brühl ML, Barocke V. et al. EMMPRIN (CD147/basigin) mediates platelet-monocyte interactions in vivo and augments monocyte recruitment to the vascular wall. J Thromb Haemost 2011; 9 (05) 1007-1019
- 119 Haselmayer P, Grosse-Hovest L, von Landenberg P, Schild H, Radsak MP. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood 2007; 110 (03) 1029-1035
- 120 Gerdes N, Seijkens T, Lievens D. et al. Platelet CD40 exacerbates atherosclerosis by transcellular activation of endothelial cells and leukocytes. Arterioscler Thromb Vasc Biol 2016; 36 (03) 482-490
- 121 Kuckleburg CJ, Yates CM, Kalia N. et al. Endothelial cell-borne platelet bridges selectively recruit monocytes in human and mouse models of vascular inflammation. Cardiovasc Res 2011; 91 (01) 134-141
- 122 Passacquale G, Vamadevan P, Pereira L, Hamid C, Corrigall V, Ferro A. Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes. PLoS One 2011; 6 (10) e25595
- 123 Martins PADC, van Gils JM, Mol A, Hordijk PL, Zwaginga JJ. Platelet binding to monocytes increases the adhesive properties of monocytes by up-regulating the expression and functionality of β1 and β2 integrins. J Leukoc Biol 2006; 79 (03) 499-507
- 124 van Gils JM, da Costa Martins PA, Mol A, Hordijk PL, Zwaginga JJ. Transendothelial migration drives dissociation of plateletmonocyte complexes. Thromb Haemost 2008; 100 (02) 271-279
- 125 Barrett TJ, Schlegel M, Zhou F. et al. Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis. Sci Transl Med 2019; 11 (517) eaax0481
- 126 Dehghani T, Panitch A. Endothelial cells, neutrophils and platelets: getting to the bottom of an inflammatory triangle. Open Biol 2020; 10 (10) 200161
- 127 Sreeramkumar V, Adrover JM, Ballesteros I. et al. Neutrophils scan for activated platelets to initiate inflammation. Science 2014; 346 (6214) 1234-1238
- 128 Lisman T. Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res 2018; 371 (03) 567-576
- 129 Lam FW, Burns AR, Smith CW, Rumbaut RE. Platelets enhance neutrophil transendothelial migration via P-selectin glycoprotein ligand-1. Am J Physiol Heart Circ Physiol 2011; 300 (02) H468-H475
- 130 Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood 1996; 88 (01) 146-157
- 131 Labrador V, Riha P, Muller S, Dumas D, Wang X, Stoltz JF. The strength of integrin binding between neutrophils and endothelial cells. Eur Biophys J 2003; 32 (08) 684-688
- 132 Wang Y, Gao H, Shi C. et al. Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα. Nat Commun 2017; 8: 15559
- 133 Santoso S, Sachs UJ, Kroll H. et al. The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med 2002; 196 (05) 679-691
- 134 Lievens D, Zernecke A, Seijkens T. et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 2010; 116 (20) 4317-4327
- 135 Kaiser R, Escaig R, Erber J, Nicolai L. Neutrophil-platelet interactions as novel treatment targets in cardiovascular disease. Front Cardiovasc Med 2022; 8: 824112
- 136 Kuijper PH, Gallardo Tores HI, Lammers JW, Sixma JJ, Koenderman L, Zwaginga JJ. Platelet associated fibrinogen and ICAM-2 induce firm adhesion of neutrophils under flow conditions. Thromb Haemost 1998; 80 (03) 443-448
- 137 Pitchford S, Pan D, Welch HC. Platelets in neutrophil recruitment to sites of inflammation. Curr Opin Hematol 2017; 24 (01) 23-31
- 138 Page C, Pitchford S. Neutrophil and platelet complexes and their relevance to neutrophil recruitment and activation. Int Immunopharmacol 2013; 17 (04) 1176-1184
- 139 Gross PL. A long-half-life, high-affinity P-selectin inhibitor. Blood 2021; 138 (13) 1096-1097
- 140 Braun OO, Slotta JE, Menger MD, Erlinge D, Thorlacius H. Primary and secondary capture of platelets onto inflamed femoral artery endothelium is dependent on P-selectin and PSGL-1. Eur J Pharmacol 2008; 592 (1-3): 128-132
- 141 Phillips JW, Barringhaus KG, Sanders JM. et al. Single injection of P-selectin or P-selectin glycoprotein ligand-1 monoclonal antibody blocks neointima formation after arterial injury in apolipoprotein E-deficient mice. Circulation 2003; 107 (17) 2244-2249
- 142 Tseng CN, Chang YT, Yen CY. et al. Early inhibition of P-selectin/P-selectin glycoprotein ligand-1 reduces intimal hyperplasia in murine vein grafts through platelet adhesion. Thromb Haemost 2019; 119 (12) 2014-2024
- 143 Kling D, Stucki C, Kronenberg S. et al. Pharmacological control of platelet-leukocyte interactions by the human anti-P-selectin antibody inclacumab–preclinical and clinical studies. Thromb Res 2013; 131 (05) 401-410
- 144 Schmitt C, Abt M, Ciorciaro C. et al. First-in-man study with inclacumab, a human monoclonal antibody against P-selectin. J Cardiovasc Pharmacol 2015; 65 (06) 611-619
- 145 Tardif JC, Tanguay JF, Wright SR. et al. Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non-ST-segment elevation myocardial infarction: results of the SELECT-ACS trial. J Am Coll Cardiol 2013; 61 (20) 2048-2055
- 146 Stähli BE, Gebhard C, Duchatelle V. et al. Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention according to timing of infusion: insights from the SELECT-ACS trial. J Am Heart Assoc 2016; 5 (11) e004255
- 147 Ataga KI, Kutlar A, Kanter J. et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N Engl J Med 2017; 376 (05) 429-439
- 148 Scully M, Cataland SR, Peyvandi F. et al; HERCULES Investigators. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2019; 380 (04) 335-346
- 149 Sakai K, Someya T, Harada K, Yagi H, Matsui T, Matsumoto M. Novel aptamer to von Willebrand factor A1 domain (TAGX-0004) shows total inhibition of thrombus formation superior to ARC1779 and comparable to caplacizumab. Haematologica 2020; 105 (11) 2631-2638
- 150 Kovacevic KD, Greisenegger S, Langer A. et al. The aptamer BT200 blocks von Willebrand factor and platelet function in blood of stroke patients. Sci Rep 2021; 11 (01) 3092
- 151 Wang J, Gao Y, Chen L. et al. Structure of the platelet glycoprotein Ib receptor in complex with a novel antithrombotic agent. Blood 2021; 137 (06) 844-847
- 152 Zheng L, Adili R, Wu Z. et al. Preventative and therapeutic effects of a novel humanized anti-glycoprotein Ibα fragment of antigen-binding region in a murine model of thrombotic thrombocytopenic purpura. J Thromb Haemost 2025; 23 (05) 1596-1607
- 153 Witsch T, Martinod K, Sorvillo N, Portier I, De Meyer SF, Wagner DD. Recombinant human ADAMTS13 treatment improves myocardial remodeling and functionality after pressure overload injury in mice. J Am Heart Assoc 2018; 7 (03) e007004
- 154 Ozawa K, Packwood W, Muller MA. et al. Removal of endothelial surface-associated von Willebrand factor suppresses accelerate datherosclerosis after myocardial infarction. J Transl Med 2024; 22 (01) 412
- 155 McFadyen JD, Wang X, Peter K. The quest for the holy grail in antithrombotic therapy: revitalized hope for platelet GPVI as a safe and effective antithrombotic target. Eur Heart J 2024; 45 (43) 4598-4600
- 156 Slater A, Khattak S, Thomas MR. GPVI inhibition: advancing antithrombotic therapy in cardiovascular disease. Eur Heart J Cardiovasc Pharmacother 2024; 10 (05) 465-473
- 157 Ungerer M, Li Z, Baumgartner C. et al. The GPVI-Fc fusion protein Revacept reduces thrombus formation and improves vascular dysfunction in atherosclerosis without any impact on bleeding times. PLoS One 2013; 8 (08) e71193
- 158 Goebel S, Li Z, Vogelmann J. et al. The GPVI-Fc fusion protein Revacept improves cerebral infarct volume and functional outcome in stroke. PLoS One 2013; 8 (07) e66960
- 159 Lebozec K, Jandrot-Perrus M, Avenard G, Favre-Bulle O, Billiald P. Design, development and characterization of ACT017, a humanized Fab that blocks platelet's glycoprotein VI function without causing bleeding risks. MAbs 2017; 9 (06) 945-958
- 160 Schmitt-Sody M, Metz P, Gottschalk O. et al. Selective inhibition of platelets by the GPIIb/IIIa receptor antagonist Tirofiban reduces leukocyte-endothelial cell interaction in murine antigen-induced arthritis. Inflamm Res 2007; 56 (10) 414-420
- 161 Kang SX, Meng XM, Li J. Effect of tirofiban injection on vascular endothelial function, cardiac function and inflammatory cytokines in patients with acute myocardial infarction after emergency percutaneous coronary intervention. Pak J Med Sci 2022; 38 (01) 9-15
- 162 Aymong ED, Curtis MJ, Youssef M. et al. Abciximab attenuates coronary microvascular endothelial dysfunction after coronary stenting. Circulation 2002; 105 (25) 2981-2985
- 163 Henn V, Slupsky JR, Gräfe M. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391 (6667) 591-594
- 164 Lacy M, Bürger C, Shami A. et al. Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease. Nat Commun 2021; 12 (01) 3754
- 165 Karnell JL, Rieder SA, Ettinger R, Kolbeck R. Targeting the CD40-CD40L pathway in autoimmune diseases: humoral immunity and beyond. Adv Drug Deliv Rev 2019; 141: 92-103
- 166 Samant M, Ziemniak J, Paolini JF. First-in-human phase 1 randomized trial with the anti-CD40 monoclonal antibody KPL-404: safety, tolerability, receptor occupancy, and suppression of T-cell-dependent antibody response. J Pharmacol Exp Ther 2023; 387 (03) 306-314
- 167 Babinska A, Clement CC, Przygodzki T. et al. A peptide antagonist of F11R/JAM-A reduces plaque formation and prolongs survival in an animal model of atherosclerosis. Atherosclerosis 2019; 284: 92-101
- 168 Naik MU, Stalker TJ, Brass LF, Naik UP. JAM-A protects from thrombosis by suppressing integrin αIIbβ3-dependent outside-in signaling in platelets. Blood 2012; 119 (14) 3352-3360
- 169 Friebel J, Moritz E, Witkowski M. et al. Pleiotropic effects of the protease-activated receptor 1 (PAR1) inhibitor, vorapaxar, on atherosclerosis and vascular inflammation. Cells 2021; 10 (12) 3517
- 170 McKenzie ME, Malinin AI, Bell CR. et al. Aspirin inhibits surface glycoprotein IIb/IIIa, P-selectin, CD63, and CD107a receptor expression on human platelets. Blood Coagul Fibrinolysis 2003; 14 (03) 249-253
- 171 Kobayashi T, Tahara Y, Matsumoto M. et al. Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice. J Clin Invest 2004; 114 (06) 784-794
- 172 Dzeshka MS, Shantsila A, Lip GY. Effects of aspirin on endothelial function and hypertension. Curr Hypertens Rep 2016; 18 (11) 83
- 173 Furuno T, Yamasaki F, Yokoyama T. et al. Effects of various doses of aspirin on platelet activity and endothelial function. Heart Vessels 2011; 26 (03) 267-273
- 174 Patrono C. Low-dose aspirin for the prevention of atherosclerotic cardiovascular disease. Eur Heart J 2024; 45 (27) 2362-2376
- 175 Heitzer T, Rudolph V, Schwedhelm E. et al. Clopidogrel improves systemic endothelial nitric oxide bioavailability in patients with coronary artery disease: evidence for antioxidant and antiinflammatory effects. Arterioscler Thromb Vasc Biol 2006; 26 (07) 1648-1652
- 176 Heim C, Gebhardt J, Ramsperger-Gleixner M, Jacobi J, Weyand M, Ensminger SM. Clopidogrel significantly lowers the development of atherosclerosis in ApoE-deficient mice in vivo. Heart Vessels 2016; 31 (05) 783-794
- 177 Preusch MR, Rusnak J, Staudacher K. et al. Ticagrelor promotes atherosclerotic plaque stability in a mouse model of advanced atherosclerosis. Drug Des Devel Ther 2016; 10: 2691-2699
- 178 Hamilos M, Petousis S, Parthenakis F. Interaction between platelets and endothelium: from pathophysiology to new therapeutic options. Cardiovasc Diagn Ther 2018; 8 (05) 568-580
- 179 Vieceli Dalla Sega F, Fortini F, Aquila G. et al. Ticagrelor improves endothelial function by decreasing circulating epidermal growth factor (EGF). Front Physiol 2018; 9: 337
- 180 Ganbaatar B, Fukuda D, Salim HM. et al. Ticagrelor, a P2Y12 antagonist, attenuates vascular dysfunction and inhibits atherogenesis in apolipoprotein-E-deficient mice. Atherosclerosis 2018; 275: 124-132
- 181 Campo G. et al. Biological effects of ticagrelor over clopidogrel in patients with stable coronary artery disease and chronic obstructive pulmonary disease. Thromb Haemost 2017; 117 (06) 1208-1216
- 182 Levy AP, Moreno PR. Intraplaque hemorrhage. Curr Mol Med 2006; 6 (05) 479-488
- 183 Parma L, Baganha F, Quax PHA, de Vries MR. Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur J Pharmacol 2017; 816: 107-115
- 184 Eisinger F, Patzelt J, Langer HF. The platelet response to tissue injury. Front Med (Lausanne) 2018; 5: 317
- 185 Liem MI, Schreuder FH, van Dijk AC. et al. Use of antiplatelet agents is associated with intraplaque hemorrhage on carotid magnetic resonance imaging: the plaque at risk study. Stroke 2015; 46 (12) 3411-3415
- 186 Kassem M, Crombag GAJC, Stegers J. et al. Association between antiplatelet therapy and changes in intraplaque hemorrhage in patients with mild to moderate symptomatic carotid stenosis: a longitudinal MRI study. Cerebrovasc Dis 2024; 53 (05) 598-606
- 187 Sim MMS, Shiferawe S, Wood JP. Novel strategies in antithrombotic therapy: targeting thrombosis while preserving hemostasis. Front Cardiovasc Med 2023; 10: 1272971
- 188 Mazighi M, Köhrmann M, Lemmens R. et al; ACTIMIS Study Group. Safety and efficacy of platelet glycoprotein VI inhibition in acute ischaemic stroke (ACTIMIS): a randomised, double-blind, placebo-controlled, phase 1b/2a trial. Lancet Neurol 2024; 23 (02) 157-167
- 189 Billiald P, Slater A, Welin M. et al. Targeting platelet GPVI with glenzocimab: a novel mechanism for inhibition. Blood Adv 2023; 7 (07) 1258-1268
- 190 Libby P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc Res 2021; 117 (13) 2525-2536