RSS-Feed abonnieren
DOI: 10.1055/a-2721-6094
Corticosteroids for Acute Respiratory Distress Syndrome
Autoren
Abstract
Acute respiratory distress syndrome (ARDS) remains a heterogeneous and a major challenge disease process despite five decades of study. Emerging translational data delineate three overlapping phases: exudative, proliferative, and fibroproliferative, each driven by distinct immune–mechanical pathways and potentially modifiable by glucocorticosteroids (GC) modulation. Contemporary clinical randomized trials and meta-analyses indicate that early (≤72 hours) administration of systemic GCs at receptor-saturating doses (e.g., dexamethasone from 20 to 10 mg/day, or methylprednisolone 1–2 mg/kg/day) accelerates resolution of pulmonary edema, shortens mechanical ventilation duration, and improves intensive care survival, while prolonged tapering regimens are required once fibroproliferation is established. Conversely, delayed initiation (>14 days), viral pneumonitis with high viral load, recent surgical anastomosis, or uncontrolled fungal coinfection constitute “red flags” in which GCs might increase mortality. Latent-class analyses—a statistical modeling approach in which multivariable data are reduced to indirectly observed (latent) variables—identified two (hyper- and hypoinflammatory) ARDS phenotypes that likely might respond differentially to GC exposure, although we lack validation studies. Therefore, it seems that biomarker-guided precision therapy is poised to replace the historical one-size-fits-all approach. This narrative review integrates epidemiology, pathobiology, pharmacology, and clinical evidence to provide a phase-specific, phenotype-directed framework for GC use in ARDS and outlines future research priorities aimed at harmonizing molecular endotyping with dose, timing, and tapering strategies.
Keywords
acute respiratory distress syndrome - corticosteroids - lung inflammation - systemic inflammation - outcome - organ dysfunctionPublikationsverlauf
Eingereicht: 05. September 2025
Angenommen: 12. Oktober 2025
Artikel online veröffentlicht:
11. November 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet 1967; 2 (7511): 319-323
- 2 Villar J, Ambrós A, Mosteiro F. et al; Spanish Initiative for Epidemiology, Stratification and Therapies of ARDS (SIESTA) Network. A prognostic enrichment strategy for selection of patients with acute respiratory distress syndrome in clinical trials. Crit Care Med 2019; 47 (03) 377-385
- 3 Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA 2018; 319 (07) 698-710
- 4 Banavasi H, Nguyen P, Osman H, Soubani AO. Management of ARDS - what works and what does not. Am J Med Sci 2021; 362 (01) 13-23
- 5 Bellani G, Laffey JG, Pham T. et al; LUNG SAFE Investigators, ESICM Trials Group. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016; 315 (08) 788-800
- 6 Ranieri VM, Rubenfeld GD, Thompson BT. et al; ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307 (23) 2526-2533
- 7 Kuperminc E, Heming N, Carlos M, Annane D. Corticosteroids in ARDS. J Clin Med 2023; 12 (09) 3340
- 8 Bardají-Carrillo M, López-Herrero R, Aguilar G. et al. Epidemiological trends of mechanically ventilated acute respiratory distress syndrome in the twenty-first century: a nationwide, population-based retrospective study. J Intensive Care 2025; 13 (01) 9
- 9 Villar J, Mora-Ordoñez JM, Soler JA. et al. The PANDORA Study: prevalence and outcome of acute hypoxemic respiratory failure in the pre-COVID-19 era. Crit Care Explor 2022; 4 (05) e0684
- 10 Azagew AW, Beko ZW, Ferede YM, Mekonnen HS, Abate HK, Mekonnen CK. Global prevalence of COVID-19-induced acute respiratory distress syndrome: systematic review and meta-analysis. Syst Rev 2023; 12 (01) 212
- 11 Matthay MA, Arabi Y, Arroliga AC. et al. A new global definition of acute respiratory distress syndrome. Am J Respir Crit Care Med 2024; 209 (01) 37-47
- 12 Villar J, Szakmany T, Grasselli G, Camporota L. Redefining ARDS: a paradigm shift. Crit Care 2023; 27 (01) 416
- 13 Bernard GR, Artigas A, Brigham KL. et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994; 149 (3 Pt 1): 818-824
- 14 Ferguson ND, Fan E, Camporota L. et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med 2012; 38 (10) 1573-1582 Erratum in: Intensive Care Med 2012;38(10):1731–1732
- 15 Riviello ED, Kiviri W, Twagirumugabe T. et al. Hospital incidence and outcomes of the acute respiratory distress syndrome using the Kigali Modification of the Berlin Definition. Am J Respir Crit Care Med 2016; 193 (01) 52-59
- 16 Parke RL, Bloch A, McGuinness SP. Effect of very-high-flow nasal therapy on airway pressure and end-expiratory lung impedance in healthy volunteers. Respir Care 2015; 60 (10) 1397-1403
- 17 Wick KD, Matthay MA, Ware LB. Pulse oximetry for the diagnosis and management of acute respiratory distress syndrome. Lancet Respir Med 2022; 10 (11) 1086-1098
- 18 Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med 2017; 377 (06) 562-572
- 19 Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med 2005; 31 (06) 776-784
- 20 Gattinoni L, Marini JJ, Pesenti A, Quintel M, Mancebo J, Brochard L. The “baby lung” became an adult. Intensive Care Med 2016; 42 (05) 663-673
- 21 Tonetti T, Vasques F, Rapetti F. et al. Driving pressure and mechanical power: new targets for VILI prevention. Ann Transl Med 2017; 5 (14) 286
- 22 Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome. Lancet 2021; 398 (10300): 622-637
- 23 Sinha S, Patnaik R, Behera S. Steroids in acute respiratory distress syndrome: a panacea or still a puzzle?. World J Crit Care Med 2024; 13 (02) 91225
- 24 Chaudhuri D, Nei AM, Rochwerg B. et al. 2024 focused update: guidelines on use of corticosteroids in sepsis, acute respiratory distress syndrome, and community-acquired pneumonia. Crit Care Med 2024; 52 (05) e219-e233
- 25 Qadir N, Sahetya S, Munshi L. et al. An update on management of adult patients with acute respiratory distress syndrome: an official American Thoracic Society clinical practice guideline. Am J Respir Crit Care Med 2024; 209 (01) 24-36
- 26 Bos LDJ, Ware LB. Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes. Lancet 2022; 400 (10358): 1145-1156
- 27 Han S, Mallampalli RK. The acute respiratory distress syndrome: from mechanism to translation. J Immunol 2015; 194 (03) 855-860 Erratum in: J Immunol 2015;194(11):5569
- 28 Bhargava M, Wendt CH. Biomarkers in acute lung injury. Transl Res 2012; 159 (04) 205-217
- 29 Lv K, Liang Q. Macrophages in sepsis-induced acute lung injury: exosomal modulation and therapeutic potential. Front Immunol 2025; 15: 1518008
- 30 Ma W, Tang S, Yao P. et al. Advances in acute respiratory distress syndrome: focusing on heterogeneity, pathophysiology, and therapeutic strategies. Signal Transduct Target Ther 2025; 10 (01) 75
- 31 Park KJ, Kim TO, Cho YN. et al. Deficiency and dysfunctional roles of natural killer T cells in patients with ARDS. Front Immunol 2024; 15: 1433028
- 32 Fan Y, Moser J, Jongman RM. et al. Compositional changes of the lung extracellular matrix in acute respiratory distress syndrome. Am J Physiol Cell Physiol 2025; 328 (04) C1279-C1292
- 33 Meduri GU, Eltorky MA. Understanding ARDS-associated fibroproliferation. Intensive Care Med 2015; 41 (03) 517-520
- 34 Michalski JE, Kurche JS, Schwartz DA. From ARDS to pulmonary fibrosis: the next phase of the COVID-19 pandemic?. Transl Res 2022; 241: 13-24
- 35 Möhlmann JE, Ezzafzafi S, Lindemans CA. et al. Pharmacokinetics and pharmacodynamics of systemic corticosteroids in autoimmune and inflammatory diseases: a review of current evidence. Clin Pharmacokinet 2024; 63 (09) 1251-1270
- 36 National Adrenal Diseases Foundation. Corticosteroid comparison, 2021
- 37 Deshmukh CT. Minimizing side effects of systemic corticosteroids in children. Indian J Dermatol Venereol Leprol 2007; 73 (04) 218-221
- 38 Liu D, Ahmet A, Ward L. et al. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol 2013; 9 (01) 30
- 39 Pirracchio R, Venkatesh B, Legrand M. Low-dose corticosteroids for critically ill adults with severe pulmonary infections: a review. JAMA 2024; 332 (04) 318-328
- 40 Annane D, Pastores SM, Rochwerg B. et al. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part I): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Crit Care Med 2017; 45 (12) 2078-2088
- 41 Villar J, Ferrando C, Martínez D. et al; Dexamethasone in ARDS Network. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med 2020; 8 (03) 267-276
- 42 Matalon S, Lazrak A, Jain L. Glucocorticoid-stimulated lung epithelial Na+ transport is associated with increased αENaC mRNA. Am J Physiol Lung Cell Mol Physiol 2002; 282 (04) L631-L641
- 43 Hyde GN, Seale MA, Grau EG, Borski RJ. Cortisol rapidly suppresses intracellular calcium and voltage-gated calcium channel activity in prolactin cells of the tilapia Oreochromis mossambicus . J Endocrinol 2004; 286 (04) E626-E633
- 44 Jayasimhan D, Matthay MA. Corticosteroids in adults with acute respiratory distress syndrome and severe pneumonia. BJA Educ 2023; 23 (12) 456-463
- 45 Aghai ZH, Kumar S, Farhath S. et al. Dexamethasone suppresses expression of nuclear factor-kappaB in the cells of tracheobronchial lavage fluid in premature neonates with respiratory distress. Pediatr Res 2006; 59 (06) 811-815
- 46 Kutsuzawa N, Ito Y, Kagawa S, Kohno C, Takiguchi H, Asano K. Dexamethasone restores TNFα-induced epithelial barrier dysfunction in primary rat alveolar epithelial cells. PLoS One 2023; 18 (12) e0295684
- 47 Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 2002; 82 (03) 569-600
- 48 Matthay MA. Resolution of pulmonary edema. Thirty years of progress. Am J Respir Crit Care Med 2014; 189 (11) 1301-1308
- 49 Zhang L, Wang Z, Xu F. et al. The role of glucocorticoids in the treatment of ARDS: a multicenter retrospective study based on the eICU Collaborative Research Database. Front Med (Lausanne) 2021; 8: 678260
- 50 Burnham EL, Janssen WJ, Riches DW, Moss M, Downey GP. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance. Eur Respir J 2014; 43 (01) 276-285
- 51 Meisler N, Keefer KA, Ehrlich HP, Yager DR, Myers-Parrelli J, Cutroneo KR. Dexamethasone abrogates the fibrogenic effect of transforming growth factor-beta in rat granuloma and granulation tissue fibroblasts. J Invest Dermatol 1997; 108 (03) 285-289
- 52 Meduri GU, Headley AS, Golden E. et al. Effect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial. JAMA 1998; 280 (02) 159-165
- 53 Umberto Meduri G, Confalonieri M, Chaudhuri D, Rochwerg B, Meibohm B. Chapter 24 - Prolonged glucocorticoid treatment in ARDS: pathobiological rationale and pharmacological principles. Stress: Immunology and Inflammation 2024; 5: 289-323 , 324–324.e1
- 54 Tjin G, White ES, Faiz A. et al. Lysyl oxidases regulate fibrillar collagen remodelling in idiopathic pulmonary fibrosis. Dis Model Mech 2017; 10 (11) 1301-1312 Erratum in: Dis Model Mech 2017;10(12):1545
- 55 Wu D, Li Y, Dong SH, Gao Y. Clinical outcomes of corticosteroid administration for acute respiratory distress syndrome in adults based on meta-analyses and trial sequential analysis. Ann Saudi Med 2024; 44 (03) 167-182
- 56 Lu Z, Tang Y, Liu M. et al. Association between glucocorticoid administration and outcomes in patients with ARDS based on the MIMIC-III database. Medicine (Baltimore) 2024; 103 (32) e39239
- 57 Li G, Chen D, Gao F. et al. Efficacy of corticosteroids in patients with acute respiratory distress syndrome: a meta-analysis. Ann Med 2024; 56 (01) 2381086
- 58 Zhao Y, Yao Z, Xu S, Yao L, Yu Z. Glucocorticoid therapy for acute respiratory distress syndrome: current concepts. J Intensive Med 2024; 4 (04) 417-432
- 59 Hirano Y, Madokoro S, Kondo Y, Okamoto K, Tanaka H. Corticosteroid treatment for early acute respiratory distress syndrome: a systematic review and meta-analysis of randomized trials. J Intensive Care 2020; 8 (01) 91
- 60 Rezk NA, Ibrahim AM. Effects of methyl prednisolone in early ARDS. Egyptian J Chest Dis Tuberculosis 2013; 62 (01) 167-172
- 61 Cui YQ, Ding XF, Liang HY. et al. Efficacy and safety of low-dose corticosteroids for acute respiratory distress syndrome: a systematic review and meta-analysis. World J Emerg Med 2021; 12 (03) 207-213
- 62 Foster JR. Steroids for early acute respiratory distress syndrome: critical appraisal of Meduri GU, Golden E, Freire AX, et al. Methylprednisolone infusion in early severe ARDS: results of a randomized controlled trial. Chest 2007;131:954–963. Pediatr Crit Care Med 2010; 11 (03) 404-407
- 63 Steinberg KP, Hudson LD, Goodman RB. et al; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 2006; 354 (16) 1671-1684
- 64 Landolf KM, Lemieux SM, Rose C. et al. Corticosteroid use in ARDS and its application to evolving therapeutics for coronavirus disease 2019 (COVID-19): a systematic review. Pharmacotherapy 2022; 42 (01) 71-90
- 65 Meduri GU, Bridges L, Shih MC, Marik PE, Siemieniuk RAC, Kocak M. Prolonged glucocorticoid treatment is associated with improved ARDS outcomes: analysis of individual patients' data from four randomized trials and trial-level meta-analysis of the updated literature. Intensive Care Med 2016; 42 (05) 829-840
- 66 Monedero P, Gea A, Castro P. et al; COVID-19 Spanish ICU Network. Early corticosteroids are associated with lower mortality in critically ill patients with COVID-19: a cohort study. Crit Care 2021; 25 (01) 2 Erratum in: Crit Care 2023;27(1):489
- 67 Al Sulaiman K, Korayem GB, Eljaaly K. et al. Early dexamethasone use as a protective measure in non-mechanically ventilated critically ill patients with COVID-19: a multicenter, cohort study. Sci Rep 2022; 12 (01) 9766
- 68 Confalonieri M, Urbino R, Potena A. et al. Hydrocortisone infusion for severe community-acquired pneumonia: a preliminary randomized study. Am J Respir Crit Care Med 2005; 171 (03) 242-248
- 69 Angus DC, Derde L, Al-Beidh F. et al; Writing Committee for the REMAP-CAP Investigators. Effect of hydrocortisone on mortality and organ support in patients with severe COVID-19: the REMAP-CAP COVID-19 corticosteroid domain randomized clinical trial. JAMA 2020; 324 (13) 1317-1329
- 70 Yoshihro S, Taito S, Yatabe T. The influence of steroid type on outcomes in patients with acute respiratory distress syndrome. J Intensive Care 2023; 11 (01) 32
- 71 Yoshihiro S, Hongo T, Ohki S. et al. Steroid treatment in patients with acute respiratory distress syndrome: a systematic review and network meta-analysis. J Anesth 2022; 36 (01) 107-121
- 72 Horby P, Lim WS, Emberson JR. et al; RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med 2021; 384 (08) 693-704
- 73 Meduri GU, Annane D, Confalonieri M. et al. Pharmacological principles guiding prolonged glucocorticoid treatment in ARDS. Intensive Care Med 2020; 46 (12) 2284-2296
- 74 Buttgereit F, da Silva JA, Boers M. et al. Standardised nomenclature for glucocorticoid dosages and glucocorticoid treatment regimens: current questions and tentative answers in rheumatology. Ann Rheum Dis 2002; 61 (08) 718-722
- 75 Ranjbar K, Moghadami M, Mirahmadizadeh A. et al. Methylprednisolone or dexamethasone, which one is superior corticosteroid in the treatment of hospitalized COVID-19 patients: a triple-blinded randomized controlled trial. BMC Infect Dis 2021; 21 (01) 337 Erratum in: BMC Infect Dis 2021;21(1):436
- 76 Chaudhuri D, Sasaki K, Karkar A. et al. Corticosteroids in COVID-19 and non-COVID-19 ARDS: a systematic review and meta-analysis. Intensive Care Med 2021; 47 (05) 521-537
- 77 Nicolaides NC, Pavlaki AN, Maria Alexandra MA, Chrousos GP. Glucocorticoid Therapy and Adrenal Suppression; 2018. In: Feingold KR, Ahmed SF, Anawalt B. et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000
- 78 Meduri GU, Chrousos GP. General adaptation in critical illness: glucocorticoid receptor-alpha master regulator of homeostatic corrections. Front Endocrinol (Lausanne) 2020; 11: 161
- 79 Meduri GU, Siemieniuk RAC, Ness RA, Seyler SJ. Prolonged low-dose methylprednisolone treatment is highly effective in reducing duration of mechanical ventilation and mortality in patients with ARDS. J Intensive Care 2018; 6: 53
- 80 Jones BE, Herman DD, Dela Cruz CS. et al. Summary for clinicians: clinical practice guideline for the diagnosis and treatment of community-acquired pneumonia. Ann Am Thorac Soc 2020; 17 (02) 133-138
- 81 Moreno G, Rodríguez A, Reyes LF. et al; GETGAG Study Group. Corticosteroid treatment in critically ill patients with severe influenza pneumonia: a propensity score matching study. Intensive Care Med 2018; 44 (09) 1470-1482
- 82 Ni YN, Chen G, Sun J, Liang BM, Liang ZA. The effect of corticosteroids on mortality of patients with influenza pneumonia: a systematic review and meta-analysis. Crit Care 2019; 23 (01) 99 Erratum in: Crit Care. 2020;24(1):376
- 83 Hagau N, Slavcovici A, Gonganau DN. et al. Clinical aspects and cytokine response in severe H1N1 influenza A virus infection. Crit Care 2010; 14 (06) R203
- 84 Annane D. Pro: the illegitimate crusade against corticosteroids for severe H1N1 pneumonia. Am J Respir Crit Care Med 2011; 183 (09) 1125-1126
- 85 Donnelly JP, Chen SC, Kauffman CA. et al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis 2020; 71 (06) 1367-1376
- 86 Lee R, Cho SY, Lee DG. et al. Risk factors and clinical impact of COVID-19-associated pulmonary aspergillosis: multicenter retrospective cohort study. Korean J Intern Med (Korean Assoc Intern Med) 2022; 37 (04) 851-863
- 87 Li Z, Denning DW. The impact of corticosteroids on the outcome of fungal disease: a systematic review and meta-analysis. Curr Fungal Infect Rep 2023; 17 (01) 54-70
- 88 Zhao YS, Lai QP, Tang H. et al. Identifying the risk factors of ICU-acquired fungal infections: clinical evidence from using machine learning. Front Med (Lausanne) 2024; 11: 1386161
- 89 Eriksen TF, Lassen CB, Gögenur I. Treatment with corticosteroids and the risk of anastomotic leakage following lower gastrointestinal surgery: a literature survey. Colorectal Dis 2014; 16 (05) O154-O160
- 90 Surmachevska N, Tiwari V. . Corticosteroid Induced myopathy; 2023. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025
- 91 Pitre T, Drover K, Chaudhuri D. et al. Corticosteroids in sepsis and septic shock: a systematic review, pairwise, and dose-response meta-analysis. Crit Care Explor 2024; 6 (01) e1000
- 92 Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342 (18) 1301-1308
- 93 The ARDS Network. Ketoconazole for early treatment of acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2000; 283 (15) 1995-2002
- 94 The Acute Respiratory Distress Syndrome Network. Randomized, placebo-controlled trial of lisofylline for early treatment of acute lung injury and acute respiratory distress syndrome. Crit Care Med 2002; 30 (01) 1-6
- 95 Brower RG, Lanken PN, MacIntyre N. et al; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004; 351 (04) 327-336
- 96 Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA. NHLBI ARDS Network. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2014; 2 (08) 611-620
- 97 Matthay MA, Arabi YM, Siegel ER. et al. Phenotypes and personalized medicine in the acute respiratory distress syndrome. Intensive Care Med 2020; 46 (12) 2136-2152
- 98 Famous KR, Delucchi K, Ware LB. et al; ARDS Network. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med 2017; 195 (03) 331-338 Erratum in: Am J Respir Crit Care Med 2018;198(12):1590. Erratum in: Am J Respir Crit Care Med. 2019;200(5):649
- 99 Sinha P, Kerchberger VE, Willmore A. et al. Identifying molecular phenotypes in sepsis: an analysis of two prospective observational cohorts and secondary analysis of two randomised controlled trials. Lancet Respir Med 2023; 11 (11) 965-974
- 100 Sinha P, Furfaro D, Cummings MJ. et al. Latent class analysis reveals COVID-19-related acute respiratory distress syndrome subgroups with differential responses to corticosteroids. Am J Respir Crit Care Med 2021; 204 (11) 1274-1285
- 101 Beaudequin N, Glemain B, Fajac A, Rothstein V, Fartoukh M, Voiriot G. The neutrophil-to-lymphocyte ratio in bronchoalveolar lavage fluid could help to personalize corticosteroid therapy in severe COVID-19 pneumonia. Infect Dis Now 2025; 55 (03) 105054
- 102 Yıldırım F, Karaman İ, Kaya A. Current situation in ARDS in the light of recent studies: classification, epidemiology and pharmacotherapeutics. Tuberk Toraks 2021; 69 (04) 535-546