Subscribe to RSS

DOI: 10.1055/a-2716-5737
Immunopathogenesis of Sarcoidosis
Authors
Funding Information Funding was provided by the Foundation for Sarcoidosis Fellowship Grant.
Abstract
Sarcoidosis is a granulomatous disease of unknown cause, triggered by an unidentified antigen. Although classically considered a T cell–mediated disorder with an IFN-γ signature driven by Th1, Th17, and Th17.1 cells, its pathogenesis reflects dysregulated crosstalk between innate and adaptive immunity. Granulomas form through macrophage differentiation at the core, fueled by aberrantly programmed monocytes and sustained by persistent antigen presentation to T cells. Hyperactive macrophages drive excessive peripheral cell recruitment, while dysregulated T cell responses promote T cell expansion, impaired effector regulation, and eventual exhaustion. Deficient regulatory pathways fail to counterbalance this activation, creating a perpetuating inflammatory loop that underlies disease persistence and fibrotic progression. This review integrates up-to-date transcriptomic and biological data to define the cellular and molecular mechanisms that initiate, sustain, and dysregulate immune responses in sarcoidosis.
Keywords
sarcoidosis - immunopathogenesis - granulomatous inflammation - innate immunity - adaptive immunity - interstitial lung diseasePublication History
Received: 15 August 2025
Accepted: 02 October 2025
Article published online:
06 November 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Grunewald J, Grutters JC, Arkema EV, Saketkoo LA, Moller DR, Müller-Quernheim J. Sarcoidosis. Nat Rev Dis Primers 2019; 5 (01) 45
- 2 Drent M, Crouser ED, Grunewald J. Challenges of sarcoidosis and its management. N Engl J Med 2021; 385 (11) 1018-1032
- 3 Baughman RP, Teirstein AS, Judson MA. et al; Case Control Etiologic Study of Sarcoidosis (ACCESS) research group. Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med 2001; 164 (10 Pt 1): 1885-1889
- 4 Judson MA, Boan AD, Lackland DT. The clinical course of sarcoidosis: presentation, diagnosis, and treatment in a large white and black cohort in the United States. Sarcoidosis Vasc Diffuse Lung Dis 2012; 29 (02) 119-127
- 5 Hillerdal G, Nöu E, Osterman K, Schmekel B. Sarcoidosis: epidemiology and prognosis. A 15-year European study. Am Rev Respir Dis 1984; 130 (01) 29-32
- 6 Rossides M, Grunewald J, Eklund A. et al. Familial aggregation and heritability of sarcoidosis: a Swedish nested case-control study. Eur Respir J 2018; 52 (02) 1800385
- 7 Terwiel M, van Moorsel CHM. Clinical epidemiology of familial sarcoidosis: a systematic literature review. Respir Med 2019; 149: 36-41
- 8 Sato H, Woodhead FA, Ahmad T. et al. Sarcoidosis HLA class II genotyping distinguishes differences of clinical phenotype across ethnic groups. Hum Mol Genet 2010; 19 (20) 4100-4111
- 9 Darlington P, Gabrielsen A, Sörensson P. et al. HLA-alleles associated with increased risk for extra-pulmonary involvement in sarcoidosis. Tissue Antigens 2014; 83 (04) 267-272
- 10 Liao SY, Jacobson S, Hamzeh NY. et al; GRADs Investigators. Genome-wide association study identifies multiple HLA loci for sarcoidosis susceptibility. Hum Mol Genet 2023; 32 (16) 2669-2678
- 11 Yuan S, Chen J, Geng J. et al. GWAS identifies genetic loci, lifestyle factors and circulating biomarkers that are risk factors for sarcoidosis. Nat Commun 2025; 16 (01) 2481
- 12 Fischer A, Ellinghaus D, Nutsua M. et al; GenPhenReSa Consortium. Identification of immune-relevant factors conferring sarcoidosis genetic risk. Am J Respir Crit Care Med 2015; 192 (06) 727-736
- 13 Weeratunga P, Moller DR, Ho LP. Immune mechanisms of granuloma formation in sarcoidosis and tuberculosis. J Clin Invest 2024; 134 (01) e175264
- 14 Drake WP, Oswald-Richter K, Richmond BW. et al. Oral antimycobacterial therapy in chronic cutaneous sarcoidosis: a randomized, single-masked, placebo-controlled study. JAMA Dermatol 2013; 149 (09) 1040-1049
- 15 Drake WP, Richmond BW, Oswald-Richter K. et al. Effects of broad-spectrum antimycobacterial therapy on chronic pulmonary sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2013; 30 (03) 201-211
- 16 Pagán AJ, Yang CT, Cameron J. et al. Myeloid growth factors promote resistance to mycobacterial infection by curtailing granuloma necrosis through macrophage replenishment. Cell Host Microbe 2015; 18 (01) 15-26
- 17 Oswald-Richter KA, Culver DA, Hawkins C. et al. Cellular responses to mycobacterial antigens are present in bronchoalveolar lavage fluid used in the diagnosis of sarcoidosis. Infect Immun 2009; 77 (09) 3740-3748
- 18 Drake WP, Dhason MS, Nadaf M. et al. Cellular recognition of Mycobacterium tuberculosis ESAT-6 and KatG peptides in systemic sarcoidosis. Infect Immun 2007; 75 (01) 527-530
- 19 Chen ES, Wahlström J, Song Z. et al. T cell responses to mycobacterial catalase-peroxidase profile a pathogenic antigen in systemic sarcoidosis. J Immunol 2008; 181 (12) 8784-8796
- 20 Mohanty T, Miličević K, Göthert H. et al. Balancing inflammation: the specific roles of serum amyloid A proteins in sterile and infectious diseases. Front Immunol 2025; 16: 1544085
- 21 Chen ES, Song Z, Willett MH. et al. Serum amyloid A regulates granulomatous inflammation in sarcoidosis through Toll-like receptor-2. Am J Respir Crit Care Med 2010; 181 (04) 360-373
- 22 Rothkrantz-Kos S, van Dieijen-Visser MP, Mulder PG, Drent M. Potential usefulness of inflammatory markers to monitor respiratory functional impairment in sarcoidosis. Clin Chem 2003; 49 (09) 1510-1517
- 23 Bargagli E, Magi B, Olivieri C, Bianchi N, Landi C, Rottoli P. Analysis of serum amyloid A in sarcoidosis patients. Respir Med 2011; 105 (05) 775-780
- 24 Starshinova A, Malkova A, Zinchenko U. et al. Detection of anti-vimentin antibodies in patients with sarcoidosis. Diagnostics (Basel) 2022; 12 (08) 1939
- 25 Kinloch AJ, Kaiser Y, Wolfgeher D. et al. In situ humoral immunity to vimentin in HLA-DRB1*03+ patients with pulmonary sarcoidosis. Front Immunol 2018; 9: 1516
- 26 Bagavant H, Cizio K, Araszkiewicz AM. et al. Systemic immune response to vimentin and granuloma formation in a model of pulmonary sarcoidosis. J Transl Autoimmun 2022; 5: 100153
- 27 Häggmark A, Hamsten C, Wiklundh E. et al. Proteomic profiling reveals autoimmune targets in sarcoidosis. Am J Respir Crit Care Med 2015; 191 (05) 574-583
- 28 Newman KL, Newman LS. Occupational causes of sarcoidosis. Curr Opin Allergy Clin Immunol 2012; 12 (02) 145-150
- 29 Zimmermann A, Knecht H, Häsler R. et al. Atopobium and Fusobacterium as novel candidates for sarcoidosis-associated microbiota. Eur Respir J 2017; 50 (06) 1600746
- 30 Hilty M, Burke C, Pedro H. et al. Disordered microbial communities in asthmatic airways. PLoS One 2010; 5 (01) e8578
- 31 Garzoni C, Brugger SD, Qi W. et al. Microbial communities in the respiratory tract of patients with interstitial lung disease. Thorax 2013; 68 (12) 1150-1156
- 32 Clarke EL, Lauder AP, Hofstaedter CE. et al. Microbial lineages in sarcoidosis. A metagenomic analysis tailored for low-microbial content samples. Am J Respir Crit Care Med 2018; 197 (02) 225-234
- 33 Negi M, Takemura T, Guzman J. et al. Localization of propionibacterium acnes in granulomas supports a possible etiologic link between sarcoidosis and the bacterium. Mod Pathol 2012; 25 (09) 1284-1297
- 34 Budden KF, Gellatly SL, Wood DL. et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol 2017; 15 (01) 55-63
- 35 Scher JU, Joshua V, Artacho A. et al. The lung microbiota in early rheumatoid arthritis and autoimmunity. Microbiome 2016; 4 (01) 60
- 36 Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 2002; 17 (06) 693-702
- 37 Wikén M, Grunewald J, Eklund A, Wahlström J. Higher monocyte expression of TLR2 and TLR4, and enhanced pro-inflammatory synergy of TLR2 with NOD2 stimulation in sarcoidosis. J Clin Immunol 2009; 29 (01) 78-89
- 38 Besnard V, Calender A, Bouvry D. et al. G908R NOD2 variant in a family with sarcoidosis. Respir Res 2018; 19 (01) 44
- 39 Huizenga T, Kado J, Mehregan DR, Diamond S. Identifying Toll-like receptor expression in cutaneous sarcoidosis. Am J Dermatopathol 2015; 37 (01) 67-72
- 40 Chen X, Zhao D, Ning Y, Zhou Y. Toll-like receptors 2 expression in mediastinal lymph node of patients with sarcoidosis. Ann Transl Med 2020; 8 (18) 1182
- 41 Wikén M, Idali F, Al Hayja MA, Grunewald J, Eklund A, Wahlström J. No evidence of altered alveolar macrophage polarization, but reduced expression of TLR2, in bronchoalveolar lavage cells in sarcoidosis. Respir Res 2010; 11 (01) 121
- 42 Gabrilovich MI, Walrath J, van Lunteren J. et al. Disordered Toll-like receptor 2 responses in the pathogenesis of pulmonary sarcoidosis. Clin Exp Immunol 2013; 173 (03) 512-522
- 43 Rastogi R, Du W, Ju D. et al. Dysregulation of p38 and MKP-1 in response to NOD1/TLR4 stimulation in sarcoid bronchoalveolar cells. Am J Respir Crit Care Med 2011; 183 (04) 500-510
- 44 Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol 2023; 23 (09) 563-579
- 45 Steffen M, Petersen J, Oldigs M. et al. Increased secretion of tumor necrosis factor-alpha, interleukin-1-beta, and interleukin-6 by alveolar macrophages from patients with sarcoidosis. J Allergy Clin Immunol 1993; 91 (04) 939-949
- 46 Müller-Quernheim J, Pfeifer S, Männel D, Strausz J, Ferlinz R. Lung-restricted activation of the alveolar macrophage/monocyte system in pulmonary sarcoidosis. Am Rev Respir Dis 1992; 145 (01) 187-192
- 47 Kline JN, Schwartz DA, Monick MM, Floerchinger CS, Hunninghake GW. Relative release of interleukin-1 beta and interleukin-1 receptor antagonist by alveolar macrophages. A study in asbestos-induced lung disease, sarcoidosis, and idiopathic pulmonary fibrosis. Chest 1993; 104 (01) 47-53
- 48 Pueringer RJ, Schwartz DA, Dayton CS, Gilbert SR, Hunninghake GW. The relationship between alveolar macrophage TNF, IL-1, and PGE2 release, alveolitis, and disease severity in sarcoidosis. Chest 1993; 103 (03) 832-838
- 49 Mikuniya T, Nagai S, Takeuchi M. et al. Significance of the interleukin-1 receptor antagonist/interleukin-1 beta ratio as a prognostic factor in patients with pulmonary sarcoidosis. Respiration 2000; 67 (04) 389-396
- 50 Huppertz C, Jäger B, Wieczorek G. et al. The NLRP3 inflammasome pathway is activated in sarcoidosis and involved in granuloma formation. Eur Respir J 2020; 55 (03) 1900119
- 51 Locke LW, Crouser ED, White P. et al. IL-13-regulated macrophage polarization during granuloma formation in an in vitro human sarcoidosis model. Am J Respir Cell Mol Biol 2019; 60 (01) 84-95
- 52 Shamaei M, Mortaz E, Pourabdollah M. et al. Evidence for M2 macrophages in granulomas from pulmonary sarcoidosis: a new aspect of macrophage heterogeneity. Hum Immunol 2018; 79 (01) 63-69
- 53 Wojtan P, Mierzejewski M, Osińska I, Domagała-Kulawik J. Macrophage polarization in interstitial lung diseases. Cent Eur J Immunol 2016; 41 (02) 159-164
- 54 Prokop S, Heppner FL, Goebel HH, Stenzel W. M2 polarized macrophages and giant cells contribute to myofibrosis in neuromuscular sarcoidosis. Am J Pathol 2011; 178 (03) 1279-1286
- 55 Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity 2010; 32 (05) 593-604
- 56 Prasse A, Probst C, Bargagli E. et al. Serum CC-chemokine ligand 18 concentration predicts outcome in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2009; 179 (08) 717-723
- 57 Crouser ED, Locke LW, Julian MW. et al. Phagosome-regulated mTOR signalling during sarcoidosis granuloma biogenesis. Eur Respir J 2021; 57 (03) 2002695
- 58 Linke M, Pham HT, Katholnig K. et al. Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nat Immunol 2017; 18 (03) 293-302
- 59 Venet A, Hance AJ, Saltini C, Robinson BW, Crystal RG. Enhanced alveolar macrophage-mediated antigen-induced T-lymphocyte proliferation in sarcoidosis. J Clin Invest 1985; 75 (01) 293-301
- 60 Gant VA, Shakoor Z, Barbosa IL, Hamblin AS. Normal and sarcoid alveolar macrophages differ in their ability to present antigen and to cluster with autologous lymphocytes. Clin Exp Immunol 1991; 86 (03) 494-499
- 61 Krausgruber T, Redl A, Barreca D. et al. Single-cell and spatial transcriptomics reveal aberrant lymphoid developmental programs driving granuloma formation. Immunity 2023; 56 (02) 289-306.e7
- 62 Carow B, Muliadi V, Skålén K. et al. Immune mapping of human tuberculosis and sarcoidosis lung granulomas. Front Immunol 2024; 14: 1332733
- 63 Capelli A, Di Stefano A, Lusuardi M, Gnemmi I, Donner CF. Increased macrophage inflammatory protein-1alpha and macrophage inflammatory protein-1beta levels in bronchoalveolar lavage fluid of patients affected by different stages of pulmonary sarcoidosis. Am J Respir Crit Care Med 2002; 165 (02) 236-241
- 64 Gibejova A, Mrazek F, Subrtova D. et al. Expression of macrophage inflammatory protein-3 beta/CCL19 in pulmonary sarcoidosis. Am J Respir Crit Care Med 2003; 167 (12) 1695-1703
- 65 Patel AA, Zhang Y, Fullerton JN. et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med 2017; 214 (07) 1913-1923
- 66 Hofer TP, Zawada AM, Frankenberger M. et al. slan-defined subsets of CD16-positive monocytes: impact of granulomatous inflammation and M-CSF receptor mutation. Blood 2015; 126 (24) 2601-2610
- 67 Qiaozhen H, Jifei Z, Lingrong H, Qiuming Y, Hongjuan Y, Qiaozhen H. Clinical significance of detection of mononuclear phagocyte subsets in blood and bronchoalveolar lavage fluid (BALF) in pulmonary sarcoidosis. Cell Mol Biol (Noisy-le-grand) 2022; 67 (05) 109-116
- 68 Okamoto H, Mizuno K, Horio T. Circulating CD14+ CD16+ monocytes are expanded in sarcoidosis patients. J Dermatol 2003; 30 (07) 503-509
- 69 Lepzien R, Rankin G, Pourazar J. et al. Mapping mononuclear phagocytes in blood, lungs, and lymph nodes of sarcoidosis patients. J Leukoc Biol 2019; 105 (04) 797-807
- 70 Lepzien R, Liu S, Czarnewski P. et al. Monocytes in sarcoidosis are potent tumour necrosis factor producers and predict disease outcome. Eur Respir J 2021; 58 (01) 2003468
- 71 Soler P, Basset F. Morphology and distribution of the cells of a sarcoid granuloma: ultrastructural study of serial sections. Ann N Y Acad Sci 1976; 278: 147-160
- 72 Okamoto H, Mizuno K, Horio T. Monocyte-derived multinucleated giant cells and sarcoidosis. J Dermatol Sci 2003; 31 (02) 119-128
- 73 Heron M, Grutters JC, van Velzen-Blad H, Veltkamp M, Claessen AME, van den Bosch JMM. Increased expression of CD16, CD69, and very late antigen-1 on blood monocytes in active sarcoidosis. Chest 2008; 134 (05) 1001-1008
- 74 Garman L, Pelikan RC, Rasmussen A. et al. Single cell transcriptomics implicate novel monocyte and T cell immune dysregulation in sarcoidosis. Front Immunol 2020; 11: 567342
- 75 Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011; 11 (11) 762-774
- 76 Gschwandtner M, Derler R, Midwood KS. More than just attractive: how CCL2 influences myeloid cell behavior beyond chemotaxis. Front Immunol 2019; 10: 2759
- 77 Spagnolo P, Renzoni EA, Wells AU. et al. C-C chemokine receptor 2 and sarcoidosis: association with Lofgren's syndrome. Am J Respir Crit Care Med 2003; 168 (10) 1162-1166
- 78 Hiranuma R, Sato R, Yamaguchi K. et al. Aberrant monocytopoiesis drives granuloma development in sarcoidosis. Int Immunol 2024; 36 (04) 183-196
- 79 Milman N, Burton C, Andersen CB, Carlsen J, Iversen M. Lung transplantation for end-stage pulmonary sarcoidosis: outcome in a series of seven consecutive patients. Sarcoidosis Vasc Diffuse Lung Dis 2005; 22 (03) 222-228
- 80 Ionescu DN, Hunt JL, Lomago D, Yousem SA. Recurrent sarcoidosis in lung transplant allografts: granulomas are of recipient origin. Diagn Mol Pathol 2005; 14 (03) 140-145
- 81 Wahlund CJE, Gucluler Akpinar G, Steiner L. et al. Sarcoidosis exosomes stimulate monocytes to produce pro-inflammatory cytokines and CCL2. Sci Rep 2020; 10 (01) 15328
- 82 Fraser SD, Sadofsky LR, Kaye PM, Hart SP. Reduced expression of monocyte CD200R is associated with enhanced proinflammatory cytokine production in sarcoidosis. Sci Rep 2016; 6: 38689
- 83 Cinetto F, Scarpa R, Dell'Edera A, Jones MG. Immunology of sarcoidosis: old companions, new relationships. Curr Opin Pulm Med 2020; 26 (05) 535-543
- 84 Dubaniewicz A, Typiak M, Wybieralska M. et al. Changed phagocytic activity and pattern of Fcγ and complement receptors on blood monocytes in sarcoidosis. Hum Immunol 2012; 73 (08) 788-794
- 85 Typiak M, Trzonkowski P, Skotarczak M, Dubaniewicz A. Comparative analysis of Fcγ and complement receptors presence on monocytes in pulmonary sarcoidosis and tuberculosis. Int J Mol Sci 2023; 24 (11) 9713
- 86 Talreja J, Farshi P, Alazizi A, Luca F, Pique-Regi R, Samavati L. RNA-sequencing identifies novel pathways in sarcoidosis monocytes. Sci Rep 2017; 7 (01) 2720
- 87 Yoshioka K, Sato H, Kawasaki T. et al. Transcriptome analysis of peripheral blood mononuclear cells in pulmonary sarcoidosis. Front Med (Lausanne) 2022; 9: 822094
- 88 Ascoli C, Schott CA, Huang Y. et al. Altered transcription factor targeting is associated with differential peripheral blood mononuclear cell proportions in sarcoidosis. Front Immunol 2022; 13: 848759
- 89 O'Keeffe M, Mok WH, Radford KJ. Human dendritic cell subsets and function in health and disease. Cell Mol Life Sci 2015; 72 (22) 4309-4325
- 90 Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human dendritic cells: their heterogeneity and clinical application potential in cancer immunotherapy. Front Immunol 2019; 9: 3176
- 91 Vermaelen K, Pauwels R. Accurate and simple discrimination of mouse pulmonary dendritic cell and macrophage populations by flow cytometry: methodology and new insights. Cytometry A 2004; 61 (02) 170-177
- 92 Hemmi H, Akira S. TLR signalling and the function of dendritic cells. Chem Immunol Allergy 2005; 86: 120-135
- 93 Cerboni S, Gentili M, Manel N. Diversity of pathogen sensors in dendritic cells. Adv Immunol 2013; 120: 211-237
- 94 Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. Int Rev Cell Mol Biol 2019; 348: 1-68
- 95 Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 2005; 5 (08) 617-628
- 96 Kadowaki N. Dendritic cells: a conductor of T cell differentiation. Allergol Int 2007; 56 (03) 193-199
- 97 Jenkins SJ, Perona-Wright G, Worsley AG, Ishii N, MacDonald AS. Dendritic cell expression of OX40 ligand acts as a costimulatory, not polarizing, signal for optimal Th2 priming and memory induction in vivo. J Immunol 2007; 179 (06) 3515-3523
- 98 Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol 2015; 16 (04) 343-353
- 99 Huang G, Wang Y, Chi H. Regulation of TH17 cell differentiation by innate immune signals. Cell Mol Immunol 2012; 9 (04) 287-295
- 100 Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 2004; 117 (04) 515-526
- 101 Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology 2018; 154 (01) 3-20
- 102 Iwamoto S, Iwai S, Tsujiyama K. et al. TNF-alpha drives human CD14+ monocytes to differentiate into CD70+ dendritic cells evoking Th1 and Th17 responses. J Immunol 2007; 179 (03) 1449-1457
- 103 Kishi J, Nishioka Y, Kuwahara T. et al. Blockade of Th1 chemokine receptors ameliorates pulmonary granulomatosis in mice. Eur Respir J 2011; 38 (02) 415-424
- 104 Barna BP, Malur A, Thomassen MJ. Studies in a murine granuloma model of instilled carbon nanotubes: relevance to sarcoidosis. Int J Mol Sci 2021; 22 (07) 3705
- 105 Ten Berge B, Kleinjan A, Muskens F. et al. Evidence for local dendritic cell activation in pulmonary sarcoidosis. Respir Res 2012; 13 (01) 33
- 106 Tateyama M, Fujihara K, Itoyama Y. Dendritic cells in muscle lesions of sarcoidosis. Hum Pathol 2011; 42 (03) 340-346
- 107 van Haarst JM, Verhoeven GT, de Wit HJ, Hoogsteden HC, Debets R, Drexhage HA. CD1a+ and CD1a- accessory cells from human bronchoalveolar lavage differ in allostimulatory potential and cytokine production. Am J Respir Cell Mol Biol 1996; 15 (06) 752-759
- 108 Lommatzsch M, Bratke K, Bier A. et al. Airway dendritic cell phenotypes in inflammatory diseases of the human lung. Eur Respir J 2007; 30 (05) 878-886
- 109 Ota M, Amakawa R, Uehira K. et al. Involvement of dendritic cells in sarcoidosis. Thorax 2004; 59 (05) 408-413
- 110 Lepzien R, Nie M, Czarnewski P. et al. Pulmonary and blood dendritic cells from sarcoidosis patients more potently induce IFNγ-producing Th1 cells compared with monocytes. J Leukoc Biol 2022; 111 (04) 857-866
- 111 Amsen D, Spilianakis CG, Flavell RA. How are T(H)1 and T(H)2 effector cells made?. Curr Opin Immunol 2009; 21 (02) 153-160
- 112 Shigehara K, Shijubo N, Ohmichi M. et al. IL-12 and IL-18 are increased and stimulate IFN-gamma production in sarcoid lungs. J Immunol 2001; 166 (01) 642-649
- 113 Mroz RM, Korniluk M, Stasiak-Barmuta A, Chyczewska E. Increased levels of interleukin-12 and interleukin-18 in bronchoalveolar lavage fluid of patients with pulmonary sarcoidosis. J Physiol Pharmacol 2008; 59 (Suppl. 06) 507-513
- 114 Halawi A, Kurban M, Abbas O. Plasmacytoid dendritic cells in cutaneous sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2018; 35 (01) 55-61
- 115 Hayashi Y, Ishii Y, Hata-Suzuki M. et al. Comparative analysis of circulating dendritic cell subsets in patients with atopic diseases and sarcoidosis. Respir Res 2013; 14 (01) 29
- 116 Mathew S, Bauer KL, Fischoeder A, Bhardwaj N, Oliver SJ. The anergic state in sarcoidosis is associated with diminished dendritic cell function. J Immunol 2008; 181 (01) 746-755
- 117 Zaba LC, Smith GP, Sanchez M, Prystowsky SD. Dendritic cells in the pathogenesis of sarcoidosis. Am J Respir Cell Mol Biol 2010; 42 (01) 32-39
- 118 Barna BP, Judson MA, Thomassen MJ. Inflammatory pathways in sarcoidosis. Adv Exp Med Biol 2021; 1304: 39-52
- 119 Hunninghake GW, Crystal RG. Pulmonary sarcoidosis: a disorder mediated by excess helper T-lymphocyte activity at sites of disease activity. N Engl J Med 1981; 305 (08) 429-434
- 120 Morris DG, Jasmer RM, Huang L, Gotway MB, Nishimura S, King Jr TE. Sarcoidosis following HIV infection: evidence for CD4+ lymphocyte dependence. Chest 2003; 124 (03) 929-935
- 121 Patente TA, Pelgrom LR, Everts B. Dendritic cells are what they eat: how their metabolism shapes T helper cell polarization. Curr Opin Immunol 2019; 58: 16-23
- 122 Huang W, August A. The signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation. J Leukoc Biol 2015; 97 (03) 477-485
- 123 Planck A, Eklund A, Grunewald J. Markers of activity in clinically recovered human leukocyte antigen-DR17-positive sarcoidosis patients. Eur Respir J 2003; 21 (01) 52-57
- 124 Grunewald J, Olerup O, Persson U, Ohrn MB, Wigzell H, Eklund A. T-cell receptor variable region gene usage by CD4+ and CD8+ T cells in bronchoalveolar lavage fluid and peripheral blood of sarcoidosis patients. Proc Natl Acad Sci U S A 1994; 91 (11) 4965-4969
- 125 Grunewald J, Berlin M, Olerup O, Eklund A. Lung T-helper cells expressing T-cell receptor AV2S3 associate with clinical features of pulmonary sarcoidosis. Am J Respir Crit Care Med 2000; 161 (3 Pt 1): 814-818
- 126 Ahlgren KM, Ruckdeschel T, Eklund A, Wahlström J, Grunewald J. T cell receptor-Vβ repertoires in lung and blood CD4+ and CD8+ T cells of pulmonary sarcoidosis patients. BMC Pulm Med 2014; 14: 50
- 127 Darlington P, Kullberg S, Eklund A, Grunewald J. Lung CD4+ Vα2.3+ T-cells in sarcoidosis cohorts with Löfgren's syndrome. Respir Res 2020; 21 (01) 61
- 128 Katchar K, Wahlström J, Eklund A, Grunewald J. Highly activated T-cell receptor AV2S3(+) CD4(+) lung T-cell expansions in pulmonary sarcoidosis. Am J Respir Crit Care Med 2001; 163 (07) 1540-1545
- 129 Parry RV, Chemnitz JM, Frauwirth KA. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005; 25 (21) 9543-9553
- 130 Celada LJ, Rotsinger JE, Young A. et al. Programmed death-1 inhibition of phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin signaling impairs sarcoidosis CD4+ T cell proliferation. Am J Respir Cell Mol Biol 2017; 56 (01) 74-82
- 131 Miedema JR, de Jong LJ, Kahlmann V. et al. Increased proportions of circulating PD-1+ CD4+ memory T cells and PD-1+ regulatory T cells associate with good response to prednisone in pulmonary sarcoidosis. Respir Res 2024; 25 (01) 196
- 132 Ma C, Huang J, Zheng Y. et al. Anti-TL1A monoclonal antibody modulates the dysregulation of Th1/Th17 cells and attenuates granuloma formation in sarcoidosis by inhibiting the PI3K/AKT signaling pathway. Int Immunopharmacol 2024; 137: 112360
- 133 Agostini C, Meneghin A, Semenzato G. T-lymphocytes and cytokines in sarcoidosis. Curr Opin Pulm Med 2002; 8 (05) 435-440
- 134 Saltini C, Spurzem JR, Lee JJ, Pinkston P, Crystal RG. Spontaneous release of interleukin 2 by lung T lymphocytes in active pulmonary sarcoidosis is primarily from the Leu3+DR+ T cell subset. J Clin Invest 1986; 77 (06) 1962-1970
- 135 Chen ES, Moller DR. Sarcoidosis—scientific progress and clinical challenges. Nat Rev Rheumatol 2011; 7 (08) 457-467
- 136 Ramstein J, Broos CE, Simpson LJ. et al. IFN-γ-producing T-helper 17.1 cells are increased in sarcoidosis and are more prevalent than T-helper type 1 cells. Am J Respir Crit Care Med 2016; 193 (11) 1281-1291
- 137 Oswald-Richter KA, Richmond BW, Braun NA. et al. Reversal of global CD4+ subset dysfunction is associated with spontaneous clinical resolution of pulmonary sarcoidosis. J Immunol 2013; 190 (11) 5446-5453
- 138 Sakthivel P, Bruder D. Mechanism of granuloma formation in sarcoidosis. Curr Opin Hematol 2017; 24 (01) 59-65
- 139 Miedema JR, de Jong LJ, van Uden D. et al. Circulating T cells in sarcoidosis have an aberrantly activated phenotype that correlates with disease outcome. J Autoimmun 2024; 149: 103120
- 140 d'Alessandro M, Bergantini L, Cameli P. et al. Adaptive immune system in pulmonary sarcoidosis—comparison of peripheral and alveolar biomarkers. Clin Exp Immunol 2021; 205 (03) 406-416
- 141 Grover P, Goel PN, Greene MI. Regulatory T cells: regulation of identity and function. Front Immunol 2021; 12: 750542
- 142 Bennett CL, Christie J, Ramsdell F. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27 (01) 20-21
- 143 Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155 (03) 1151-1164
- 144 Broos CE, van Nimwegen M, Kleinjan A. et al. Impaired survival of regulatory T cells in pulmonary sarcoidosis. Respir Res 2015; 16 (01) 108
- 145 Miyara M, Amoura Z, Parizot C. et al. The immune paradox of sarcoidosis and regulatory T cells. J Exp Med 2006; 203 (02) 359-370
- 146 Planck A, Katchar K, Eklund A, Gripenbäck S, Grunewald J. T-lymphocyte activity in HLA-DR17 positive patients with active and clinically recovered sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2003; 20 (02) 110-117
- 147 Taflin C, Miyara M, Nochy D. et al. FoxP3+ regulatory T cells suppress early stages of granuloma formation but have little impact on sarcoidosis lesions. Am J Pathol 2009; 174 (02) 497-508
- 148 Patterson KC, Miller WT, Hancock WW, Akimova T. FOXP3+ regulatory T cells are associated with the severity and prognosis of sarcoidosis. Front Immunol 2023; 14: 1301991
- 149 Huang H, Lu Z, Jiang C, Liu J, Wang Y, Xu Z. Imbalance between Th17 and regulatory T-cells in sarcoidosis. Int J Mol Sci 2013; 14 (11) 21463-21473
- 150 Wikén M, Grunewald J, Eklund A, Wahlström J. Multiparameter phenotyping of T-cell subsets in distinct subgroups of patients with pulmonary sarcoidosis. J Intern Med 2012; 271 (01) 90-103
- 151 Rappl G, Pabst S, Riemann D. et al. Regulatory T cells with reduced repressor capacities are extensively amplified in pulmonary sarcoid lesions and sustain granuloma formation. Clin Immunol 2011; 140 (01) 71-83
- 152 Broos CE, van Nimwegen M, In 't Veen JC. et al. Decreased cytotoxic T-lymphocyte antigen 4 expression on regulatory T cells and Th17 cells in sarcoidosis: double trouble?. Am J Respir Crit Care Med 2015; 192 (06) 763-765
- 153 Huang K, Lee JM, Wang W. et al. Peripheral transcriptome of severe sarcoidosis involves dysregulation of multiple immunologic systems. Am J Respir Cell Mol Biol 2025; 72 (06) 712-715
- 154 Krijgsman D, Hokland M, Kuppen PJK. The role of natural killer T cells in cancer—a phenotypical and functional approach. Front Immunol 2018; 9: 367
- 155 Shissler SC, Bollino DR, Tiper IV, Bates JP, Derakhshandeh R, Webb TJ. Immunotherapeutic strategies targeting natural killer T cell responses in cancer. Immunogenetics 2016; 68 (08) 623-638
- 156 Tognarelli EI, Gutiérrez-Vera C, Palacios PA. et al. Natural killer T cell diversity and immunotherapy. Cancers (Basel) 2023; 15 (24) 5737
- 157 Ho LP, Urban BC, Thickett DR, Davies RJ, McMichael AJ. Deficiency of a subset of T-cells with immunoregulatory properties in sarcoidosis. Lancet 2005; 365 (9464): 1062-1072
- 158 Mempel M, Flageul B, Suarez F. et al. Comparison of the T cell patterns in leprous and cutaneous sarcoid granulomas. Presence of Valpha24-invariant natural killer T cells in T-cell-reactive leprosy together with a highly biased T cell receptor Valpha repertoire. Am J Pathol 2000; 157 (02) 509-523
- 159 Korosec P, Rijavec M, Silar M, Kern I, Kosnik M, Osolnik K. Deficiency of pulmonary Valpha24 Vbeta11 natural killer T cells in corticosteroid-naïve sarcoidosis patients. Respir Med 2010; 104 (04) 571-577
- 160 Kobayashi S, Kaneko Y, Seino K. et al. Impaired IFN-gamma production of Valpha24 NKT cells in non-remitting sarcoidosis. Int Immunol 2004; 16 (02) 215-222
- 161 Crawshaw A, Kendrick YR, McMichael AJ, Ho LP. Abnormalities in iNKT cells are associated with impaired ability of monocytes to produce IL-10 and suppress T-cell proliferation in sarcoidosis. Eur J Immunol 2014; 44 (07) 2165-2174
- 162 Snyder-Cappione JE, Nixon DF, Chi JC. et al. Invariant natural killer T (iNKT) cell exhaustion in sarcoidosis. Eur J Immunol 2013; 43 (08) 2194-2205
- 163 Collier JL, Weiss SA, Pauken KE, Sen DR, Sharpe AH. Not-so-opposite ends of the spectrum: CD8+ T cell dysfunction across chronic infection, cancer and autoimmunity. Nat Immunol 2021; 22 (07) 809-819
- 164 Prasse A, Georges CG, Biller H. et al. Th1 cytokine pattern in sarcoidosis is expressed by bronchoalveolar CD4+ and CD8+ T cells. Clin Exp Immunol 2000; 122 (02) 241-248
- 165 Rutkowska E, Kwiecień I, Bednarek J. et al. T lymphocyte maturation profile in the EBUS-TBNA lymph node depending on the DLCO parameter in patients with pulmonary sarcoidosis. Cells 2021; 10 (12) 3404
- 166 Wahlström J, Katchar K, Wigzell H, Olerup O, Eklund A, Grunewald J. Analysis of intracellular cytokines in CD4+ and CD8+ lung and blood T cells in sarcoidosis. Am J Respir Crit Care Med 2001; 163 (01) 115-121
- 167 Tanrıverdi H, Uygur F, Örnek T. et al. Comparison of the diagnostic value of different lymphocyte subpopulations in bronchoalveolar lavage fluid in patients with biopsy proven sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2016; 32 (04) 305-312
- 168 Paley MA, Baker BJ, Dunham SR. et al. The CSF in neurosarcoidosis contains consistent clonal expansion of CD8 T cells, but not CD4 T cells. J Neuroimmunol 2022; 367: 577860
- 169 Wahlström J, Berlin M, Sköld CM, Wigzell H, Eklund A, Grunewald J. Phenotypic analysis of lymphocytes and monocytes/macrophages in peripheral blood and bronchoalveolar lavage fluid from patients with pulmonary sarcoidosis. Thorax 1999; 54 (04) 339-346
- 170 Rivera NV, Hagemann-Jensen M, Ferreira MAR. et al. Common variants of T-cells contribute differently to phenotypic variation in sarcoidosis. Sci Rep 2017; 7 (01) 5623
- 171 Fazel SB, Howie SE, Krajewski AS, Lamb D. B lymphocyte accumulations in human pulmonary sarcoidosis. Thorax 1992; 47 (11) 964-967
- 172 Kamphuis LS, van Zelm MC, Lam KH. et al. Perigranuloma localization and abnormal maturation of B cells: emerging key players in sarcoidosis?. Am J Respir Crit Care Med 2013; 187 (04) 406-416
- 173 Kudryavtsev I, Serebriakova M, Starshinova A. et al. Imbalance in B cell and T follicular helper cell subsets in pulmonary sarcoidosis. Sci Rep 2020; 10 (01) 1059
- 174 Mengmeng Z, Jiacui S, Shanshan D. et al. Serum IL-35 levels are associated with activity and progression of sarcoidosis. Front Immunol 2020; 11: 977
- 175 Bauer L, Müller LJ, Volkers SM. et al. Follicular helper-like T cells in the lung highlight a novel role of B cells in sarcoidosis. Am J Respir Crit Care Med 2021; 204 (12) 1403-1417
- 176 Putera I, Schrijver B, Kolijn PM. et al. A serum B-lymphocyte activation signature is a key distinguishing feature of the immune response in sarcoidosis compared to tuberculosis. Commun Biol 2024; 7 (01) 1114
- 177 Saussine A, Tazi A, Feuillet S. et al. Active chronic sarcoidosis is characterized by increased transitional blood B cells, increased IL-10-producing regulatory B cells and high BAFF levels. PLoS One 2012; 7 (08) e43588
- 178 Phalke S, Aviszus K, Rubtsova K. et al. Age-associated B cells appear in patients with granulomatous lung diseases. Am J Respir Crit Care Med 2020; 202 (07) 1013-1023
- 179 Lower EE, Sturdivant M, Grate L, Baughman RP. Use of third-line therapies in advanced sarcoidosis. Clin Exp Rheumatol 2020; 38 (05) 834-840
- 180 Sweiss NJ, Lower EE, Mirsaeidi M. et al. Rituximab in the treatment of refractory pulmonary sarcoidosis. Eur Respir J 2014; 43 (05) 1525-1528
- 181 Katchar K, Söderström K, Wahlstrom J, Eklund A, Grunewald J. Characterisation of natural killer cells and CD56+ T-cells in sarcoidosis patients. Eur Respir J 2005; 26 (01) 77-85
- 182 Manika K, Domvri K, Kyriazis G, Kontakiotis T, Papakosta D. BALF and BLOOD NK- cells in different stages of pulmonary sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2022; 38 (04) e2021039
- 183 Tutor-Ureta P, Citores MJ, Castejón R. et al. Prognostic value of neutrophils and NK cells in bronchoalveolar lavage of sarcoidosis. Cytometry B Clin Cytom 2006; 70 (06) 416-422
- 184 Bergantini L, Cameli P, d'Alessandro M. et al. NK and NKT-like cells in granulomatous and fibrotic lung diseases. Clin Exp Med 2019; 19 (04) 487-494
- 185 Vakrakou AG, Kolilekas L, Lama N. et al. Peripheral blood natural killer cells in sarcoidosis are associated with early cardiac involvement. Eur J Clin Invest 2022; 52 (05) e13742