RSS-Feed abonnieren
DOI: 10.1055/a-2697-8968
Ein Konsensus der Deutschsprachigen Arbeitsgemeinschaft für Mikrochirurgie (DAM): Welche apparative Diagnostik ist für die Darstellung der Anschlussgefäße vor mikrochirurgischen Transplantationen an der unteren Extremität notwendig?
A Consensus Statement of the German-speaking Society for Reconstructive Microsurgery (GSRM): What Imaging Modalities are Necessary for Visualisation of Connecting Vessels prior to Microsurgical Transplantation in the Lower Extremity?Autoren
Zusammenfassung
Fragestellungen
Im Rahmen eines Konsensus-Workshops wurden folgende Fragen bezüglich der Darstellung der Anschlussgefäße vor mikrochirurgischen Transplantationen an der unteren Extremität diskutiert: • Braucht der klinisch gefäßgesunde Patient vor der Durchführung einer mikrochirurgischen Rekonstruktion an der unteren Extremität überhaupt eine apparative Diagnostik? • Welche apparative Diagnostik (wenn benötigt) stellt am besten die arteriellen Anschlussoptionen für eine mikrochirurgische Lappenplastik an der unteren Extremität dar? • Wann ist eine apparative Diagnostik der venösen Strombahn vor Durchführung einer mikrochirurgischen Lappenplastik an der unteren Extremität erforderlich: Routinemäßig oder nur in ausgewählten Fällen und welche ist hierfür am besten geeignet?
Methodik
Die Erfahrungen der teilnehmenden Expertinnen und Experten in Zusammenhang mit der aktuellen Literatur zu diesen Fragestellungen wurden im Rahmen eines interdisziplinären Expertenworkshops der Deutschsprachigen Arbeitsgemeinschaft für Mikrochirurgie (DAM) 2024 in Aachen diskutiert. Das Ziel des Workshops bestand darin, Empfehlungen zur Anwendung der bildgebenden Diagnostik unter Berücksichtigung individueller Patientencharakteristika zu erarbeiten und einen konsentierten Algorithmus zum diagnostischen Vorgehen zu entwickeln.
Ergebnisse
Hinsichtlich der oben genannten Fragestellungen wurde von den Teilnehmenden der folgende Konsensus formuliert: • Eine routinemäßige Basisdiagnostik der arteriellen Anschlussgefäße vor freier Lappenplastik an der unteren Extremität mittels klinischer Untersuchung und Duplexsonographie ist zu empfehlen. • Bei Notwendigkeit einer Schnittbildgebung sollte eine CTA oder MRA verwendet werden, für junge Patienten sollte die MRA favorisiert werden. Zusätzlich sollte eine dynamische Bildgebung mittels Duplexsonographie erfolgen. Eine DSA sollte überwiegend in Interventionsbereitschaft durchgeführt werden, die DSA ohne Intervention bleibt speziellen Fragestellungen vorbehalten. • Eine Duplexsonographie zur Darstellung der venösen Anschlussgefäße ist sinnvoll. Bei vorliegenden venösen Pathologien sollte eine weitere Diagnostik mittels vorzugsweise MR-Phlebographie erfolgen.
Abstract
Objectives
At a consensus workshop, the following questions were discussed regarding the preoperative imaging of recipient vessels prior to microsurgical transplantation in the lower extremity: • Is preoperative imaging necessary for patients with clinically intact peripheral vasculature undergoing microsurgical reconstruction of the lower extremity? • Which imaging modality (if required) best visualises the arterial recipient vessels for microsurgical flap reconstruction in the lower extremity? • In which cases is imaging of the venous outflow tract indicated prior to microsurgical flap reconstruction of the lower extremity: should it be performed routinely or only in selected cases, and which modality is best suited for this purpose?
Methods
At an interdisciplinary expert workshop held by the German-speaking Society for Reconstructive Microsurgery (GSRM) in Aachen in 2024, the experiences of the participating experts were discussed in the context of the current literature addressing these questions. The workshop aimed to develop recommendations for applying imaging diagnostics that take into account individual patient characteristics, and to establish a consensus-based diagnostic algorithm.
Results
Regarding the above-mentioned questions, the participants reached the following consensus: • Routine baseline assessment of the arterial recipient vessels by means of clinical examination and duplex ultrasonography is recommended prior to free flap transfer in the lower extremity. • If additional imaging is required, CT angiography (CTA) or MR angiography (MRA) should be used. In younger patients, MRA should be preferred. Additionally, dynamic imaging using duplex ultrasonography should be performed. Digital subtraction angiography (DSA) should primarily be reserved for cases where intervention is anticipated; diagnostic DSA without intervention should be limited to specific indications. • The evaluation of the venous recipient vessels using duplex ultrasonography is considered useful. If venous pathology is present, further imaging – preferably MR phlebography – should be performed.
Schlüsselwörter
Mikrochirurgie - freie Lappenplastiken - bildgebende Verfahren - Anschlussgefäße - ExtremitätenrekonstruktionKeywords
Microsurgery - free flaps - imaging procedures - recipient vessels - lower extremity reconstructionPublikationsverlauf
Eingereicht: 29. Mai 2025
Angenommen: 03. September 2025
Artikel online veröffentlicht:
17. November 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Nigam M, Zolper EG, Sharif-Askary B. et al. Expanding Criteria for Limb Salvage in Comorbid Patients with Nonhealing Wounds: The MedStar Georgetown Protocol and Lessons Learned after 200 Lower Extremity Free Flaps. Plast Reconstr Surg 2022; 150: 197-209
- 2 Arkudas A, Unglaub F, Horch RE. Mikrochirurgie. Oper Orthop Traumatol 2024; 36: 305-306
- 3 Promny T, Huberth P, Müller-Seubert W. et al. The Impact of Technical Innovations and Donor-Site Mesh Repair on Autologous Abdominal-Based Breast Reconstruction – A Retrospective Analysis. J Clin Med 2024; 13: 2165
- 4 Xiong L, Gazyakan E, Kremer T. et al. Free flaps for reconstruction of soft tissue defects in lower extremity: A meta-analysis on microsurgical outcome and safety. Microsurgery 2016; 36: 511-524
- 5 Smit JM, Dimopoulou A, Liss AG. et al. Preoperative CT angiography reduces surgery time in perforator flap reconstruction. J Plast Reconstr Aesthet Surg 2009; 62: 1112-1117
- 6 Janhofer DE, Lakhiani C, Kim PJ. et al. The Utility of Preoperative Arteriography for Free Flap Planning in Patients with Chronic Lower Extremity Wounds. Plast Reconstr Surg 2019; 143: 604-613
- 7 Cowan R, Mann G, Salibian AA. Ultrasound in Microsurgery: Current Applications and New Frontiers. J Clin Med 2024; 13: 3412
- 8 Kremkau FW. Technical Considerations, Equipment, and Physics of Duplex Sonography. In Grant EG, White EM, Hrsg. Duplex Sonography. New York, NY: Springer; 1988: 1-6
- 9 Cho M-J, Kwon JG, Pak CJ. et al. The Role of Duplex Ultrasound in Microsurgical Reconstruction: Review and Technical Considerations. J Reconstr Microsurg 2020; 36: 514-521
- 10 Seidenstucker K, Munder B, Richrath P. et al. A prospective study using color flow duplex ultrasonography for abdominal perforator mapping in microvascular breast reconstruction. Med Sci Monit 2010; 16: MT65-70
- 11 Nassar AH, Maselli AM, Manstein S. et al. Comparison of Various Modalities Utilized for Preoperative Planning in Microsurgical Reconstructive Surgery. J Reconstr Microsurg 2022; 38: 170-180
- 12 Weng C. Comparison of Color Flow Doppler, Angiogram, CT Angiogram and Time Resolved MR Angiogram in the Preoperative Evaluation of Lower Extremity Vascularity for Fibular Free Flap Reconstruction. J Otolaryngol Rhinol 2016; 2
- 13 May JW, Athanasoulis CA, Donelan MB. Preoperative magnification angiography of donor and recipient sites for clinical free transfer of flaps or digits. Plast Reconstr Surg 1979; 64: 483-490
- 14 Nam HH, Jang DK, Cho BR. Complications and risk factors after digital subtraction angiography: 1-year single-center study. J Cerebrovasc Endovasc Neurosurg 2022; 24: 335-340
- 15 Burrill J, Dabbagh Z, Gollub F. et al. Multidetector computed tomographic angiography of the cardiovascular system. Postgrad Med J 2007; 83: 698-704
- 16 Willemink MJ, Persson M, Pourmorteza A. et al. Photon-counting CT: Technical Principles and Clinical Prospects. Radiology 2018; 289: 293-312
- 17 Augustin AM, Hartung V, Grunz J-P. et al. Photon-Counting Detector CT Angiography Versus Digital Subtraction Angiography in Patients with Peripheral Arterial Disease. Acad Radiol 2024; 31: 2973-2986
- 18 Meloni A, Frijia F, Panetta D. et al. Photon-Counting Computed Tomography (PCCT): Technical Background and Cardio-Vascular Applications. Diagnostics 2023; 13: 645
- 19 Rozen WM, Ashton MW, Stella DL. et al. Developments in perforator imaging for the anterolateral thigh flap: CT angiography and CT-guided stereotaxy. Microsurgery 2008; 28: 227-232
- 20 Rozen WM, Ashton MW, Stella DL. et al. Magnetic Resonance Angiography and Computed Tomographic Angiography for Free Fibular Flap Transfer. J Reconstr Microsurg 2008; 24: 457-458
- 21 Peterson DA, Kazerooni EA, Wakefield TW. et al. Computed tomographic venography is specific but not sensitive for diagnosis of acute lower-extremity deep venous thrombosis in patients with suspected pulmonary embolus. J Vasc Surg 2001; 34: 798-804
- 22 Duwe KM, Shiau M, Budorick NE. et al. Evaluation of the Lower Extremity Veins in Patients with Suspected Pulmonary Embolism: A Retrospective Comparison of Helical CT Venography and Sonography. AJR Am J Roentgenol 2000; 175: 1525-1531
- 23 Tran TT, Kristiansen CH, Thomas O. et al. Indirect CT venography of the lower extremities: impact of scan delay and patient factors on contrast enhancement and examination quality. Eur Radiol 2022; 32: 7946-7955
- 24 Cho E-S, Kim JH, Kim S. et al. Computed Tomographic Venography for Varicose Veins of the Lower Extremities: Prospective Comparison of 80-kVp and Conventional 120-kVp Protocols. J Comput Assist Tomogr 2012; 36: 583-590
- 25 Fukaya E, Grossman R, Saloner D. et al. Magnetic Resonance Angiography for Free Fibula Flap Transfer. J reconstr Microsurg 2007; 23: 205-211
- 26 Kagen AC, Hossain R, Dayan E. et al. Modern Perforator Flap Imaging with High-Resolution Blood Pool MR Angiography. RadioGraphics 2015; 35: 901-915
- 27 Dillman JR, Ellis JH, Cohan RH. et al. Frequency and Severity of Acute Allergic-Like Reactions to Gadolinium-Containing IV Contrast Media in Children and Adults. AJR Am J Roentgenol 2007; 189: 1533-1538
- 28 Woolen SA, Shankar PR, Gagnier JJ. et al. Risk of Nephrogenic Systemic Fibrosis in Patients With Stage 4 or 5 Chronic Kidney Disease Receiving a Group II Gadolinium-Based Contrast Agent: A Systematic Review and Meta-analysis. JAMA Intern Med 2020; 180: 223-230
- 29 Terwolbeck MN, Zhang S, Bode M. et al. Relaxation-Enhanced Angiography without Contrast and Triggering (REACT) for pelvic MR venography in comparison to balanced gradient-echo and T2-weighted spin-echo techniques. Clin Imaging 2021; 74: 149-155
- 30 Helyar VG, Gupta Y, Blakeway L. et al. Depiction of Lower Limb Venous Anatomy in Patients undergoing Interventional Deep Venous Reconstruction - the Role of Balanced Steady State Free Precession MRI. Br J Radiol 2017; 91: 20170005
- 31 Criqui MH, Aboyans V. Epidemiology of Peripheral Artery Disease. Circ Res 2015; 116: 1509-1526
- 32 Demirtaş H, Parpar T, Değirmenci B. et al. Unenhanced 3D turbo spin echo MR angiography of lower extremity arteries: comparison with 128-MDCT angiography. Radiol med 2016; 121: 916-925
- 33 Muramatsu K, Shigetomi M, Ihara K. et al. Vascular complication in free tissue transfer to the leg. Microsurgery 2001; 21: 362-365
- 34 Kil S-W, Jung G-S. Anatomical Variations of the Popliteal Artery and its Tibial Branches: Analysis in 1242 Extremities. Cardiovasc Intervent Radiol 2009; 32: 233-240
- 35 Abou-Foul AK, Borumandi F. Anatomical variants of lower limb vasculature and implications for free fibula flap: Systematic review and critical analysis. Microsurgery 2016; 36: 165-172
- 36 Qazi E, Wilting J, Patel NR. et al. Arteries of the Lower Limb—Embryology, Variations, and Clinical Significance. Can Assoc Radiol J 2022; 73: 259-270
- 37 Zolper EG, Kotha VS, Walters ET. et al. Incidence of Major Arterial Abnormality in Patients with Wound Dehiscence after Lower Extremity Orthopedic Procedures. Plast Reconstr Surg 2020; 146: 1382
- 38 Schmidt VF, Masthoff M, Czihal M. et al. Imaging of peripheral vascular malformations — current concepts and future perspectives. Mol Cell Pediatr 2021; 8: 19
- 39 Anzidei M, Napoli A, Zaccagna F. et al. Diagnostic accuracy of colour Doppler ultrasonography, CT angiography and blood-pool-enhanced MR angiography in assessing carotid stenosis: a comparative study with DSA in 170 patients. Radiol Med 2012; 117: 54-71
- 40 Ouwendijk R, de Vries M, Stijnen T. et al. Multicenter randomized controlled trial of the costs and effects of noninvasive diagnostic imaging in patients with peripheral arterial disease: the DIPAD trial. AJR Am J Roentgenol 2008; 190: 1349-1357
- 41 Brenner DJ, Hall EJ. Cancer Risks from CT Scans: Now We Have Data, What Next?. Radiology 2012; 265: 330-331
- 42 Ron E, Preston DL, Mabuchi K. et al. Cancer incidence in atomic bomb survivors. Part IV: Comparison of cancer incidence and mortality. Radiat Res 1994; 137: S98-S112
- 43 Kim JW, Choo KS, Jeon UB. et al. Diagnostic performance and radiation dose of lower extremity CT angiography using a 128-slice dual source CT at 80 kVp and high pitch. Acta Radiol 2016; 57: 822-828
- 44 Gyánó M, Berczeli M, Csobay-Novák C. et al. Digital variance angiography allows about 70% decrease of DSA-related radiation exposure in lower limb X-ray angiography. Sci Rep 2021; 11: 21790
- 45 Vater AM, Prantl L, Noll M. et al. Gefäßdiagnostik vor mikrovaskulärem Gewebetransfer an der unteren Extremität: Ein Algorithmus. Unfallchirurg 2022; 125: 66-72
- 46 Beckett KR, Moriarity AK, Langer JM. Safe Use of Contrast Media: What the Radiologist Needs to Know. RadioGraphics 2015; 35: 1738-1750
- 47 Smit JM, Klein S, Werker PMN. An overview of methods for vascular mapping in the planning of free flaps. J Plast Reconstr Aesthet Surg 2010; 63: e674-e682
- 48 Augustin AM, Hartung V, Grunz J-P. et al. Photon-Counting Detector CT Angiography Versus Digital Subtraction Angiography in Patients with Peripheral Arterial Disease. Acad Radiol 2024; 31: 2973-2986
- 49 Cernic S, Pozzi Mucelli F, Pellegrin A. et al. Comparison between 64-row CT angiography and digital subtraction angiography in the study of lower extremities: personal experience. Radiol med 2009; 114: 1115-1129
- 50 Steffens JC, Schafer FKW, Oberscheid B. et al. Bolus-Chasing Contrast-Enhanced 3D MRA of the Lower Extremity. Comparison with intraarterial DSA. Acta Radiol 2003; 44: 185-192
- 51 Hölzle F, Franz E-P, Von Diepenbroick VH. et al. Evaluation der Unterschenkelarterien vor mikrochirurgischem Fibulatransfer: MRA vs. DSA. Mund Kiefer GesichtsChir 2003; 7: 246-253
- 52 Priest AN, Joubert I, Winterbottom AP. et al. Initial clinical evaluation of a non-contrast-enhanced MR angiography method in the distal lower extremities. Magn Reson Med 2013; 70: 1644-1652
- 53 Schaverien MV, Ludman CN, Neil-Dwyer J. et al. Contrast-Enhanced Magnetic Resonance Angiography for Preoperative Imaging in DIEP Flap Breast Reconstruction. Plast Reconstr Surg 2011; 128: 56-62
- 54 Cheng L, Ma L, Schoenhagen P. et al. Comparison of three-dimensional volume-targeted thin-slab FIESTA magnetic resonance angiography and 64-multidetector computed tomographic angiography for the identification of proximal coronary stenosis. Int J Cardiol 2013; 167: 2969-2976
- 55 Liu J, Zhang N, Fan Z. et al. Image Quality and Stenosis Assessment of Non-Contrast-Enhanced 3-T Magnetic Resonance Angiography in Patients with Peripheral Artery Disease Compared with Contrast-Enhanced Magnetic Resonance Angiography and Digital Subtraction Angiography. PLoS One 2016; 11: e0166467
- 56 Nonent M, Ben Salem D, Serfaty J-M. et al. Overestimation of moderate carotid stenosis assessed by both Doppler US and contrast enhanced 3D-MR angiography in the CARMEDAS study. J Neuroradiol 2011; 38: 148-155
- 57 Anzidei M, Lucatelli P, Napoli A. et al. CT angiography and magnetic resonance angiography findings after surgical and interventional radiology treatment of peripheral arterial obstructive disease. J Cardiovasc Comput Tomogr 2015; 9: 165-182
- 58 Rozen WM, Stella DL, Bowden J. et al. Advances in the pre-operative planning of deep inferior epigastric artery perforator flaps: Magnetic resonance angiography. Microsurgery 2009; 29: 119-123
- 59 Jens S, Koelemay MJW, Reekers JA. et al. Diagnostic performance of computed tomography angiography and contrast-enhanced magnetic resonance angiography in patients with critical limb ischaemia and intermittent claudication: systematic review and meta-analysis. Eur Radiol 2013; 23: 3104-3114
- 60 Jeong S-H, Namgoong S, Dhong E-S. et al. Deep vein thrombosis in donor or recipient veins encountered during lower extremity reconstruction with a free anterolateral thigh perforator flap: How do we deal with it?. Front Surg 2022; 9: 985245
- 61 Bendon CL, Crick A. Occult deep vein thrombosis in lower limb trauma requiring microsurgical reconstruction-A retrospective cohort study. J Plast Reconstr Aesthet Surg 2021; 74: 775-784
- 62 Lorenzo AR, Lin C-H, Lin C-H. et al. Selection of the recipient vein in microvascular flap reconstruction of the lower extremity: Analysis of 362 free-tissue transfers. J Plast Reconstr Aesthet Surg 2011; 64: 649-655
- 63 Janhofer DE, Lakhiani C, Kim PJ. et al. The Utility of Preoperative Venous Testing for Lower Extremity Flap Planning in Patients with Lower Extremity Wounds. Plast Reconstr Surg 2020; 145: 164e-171e
- 64 Melissinos EG, Parks DH. Post-trauma reconstruction with free tissue transfer--analysis of 442 consecutive cases. J Trauma 1989; 29: 1095-1102
- 65 Nigam M, Zolper EG, Sharif-Askary B. et al. Expanding Criteria for Limb Salvage in Comorbid Patients with Nonhealing Wounds: The MedStar Georgetown Protocol and Lessons Learned after 200 Lower Extremity Free Flaps. Plast Reconstr Surg 2022; 150: 197-209
- 66 Arnoldussen CWKP, De Graaf R, Wittens CHA. et al. Value of magnetic resonance venography and computed tomographic venography in lower extremity chronic venous disease. Phlebology 2013; 28: 169-175
