RSS-Feed abonnieren

DOI: 10.1055/a-2666-7479
Reimagining Fibrosis Research, Outcomes, and Therapeutics Through the Lens of Resolution
Funding This work was supported by grants to M.P.G. (grant no.: R35 HL144979), S.M.F. form the National Scleroderma Foundation (grant no.: K08 HL163178), and to E.F.R.(grant no.: R01 HL147860).

Abstract
Tissue fibrosis contributes to progressive organ dysfunction in a multitude of chronic human diseases. Despite decades of ongoing research dedicated to determining the cellular and molecular origins of fibrosis across multiple organs, we continue to lack truly impactful therapies that halt or reverse scarring. This unmet need is especially evident among individuals with fibrotic lung disease, such as idiopathic pulmonary fibrosis (IPF), who frequently succumb to progressive respiratory failure a few years after diagnosis. Current therapies approved for IPF and progressive fibrotic lung diseases emerged from a longstanding drug development paradigm focused on the inhibition of pro-fibrotic drivers of fibrosis. Given that the vast majority of patients with fibrotic lung disease present with already established scarring, the relative paucity of research focused on fibrosis resolution pathways represents a glaring and critical gap in our knowledge. In contrast to the progressive pathologic fibrosis emblematic of IPF, fibrosis evolved as a self-limited wound-healing response to tissue injury, and spontaneous resolution of lung fibrosis is observed in various experimental animal models. These naturally resolving animal models of fibrosis provide an opportunity to define endogenous anti-fibrotic mediators that inhibit multiple drivers of fibrosis and can orchestrate the return of tissue homeostasis. Therapeutic restoration of these endogenous “resolvers”—which are ostensibly disabled in states of pathologic fibrosis—has immense therapeutic potential. In this perspective, we contend that a paradigm shift in our approach toward fibrosis research is needed. Specifically, we propose that pulmonary fibrosis research be reprioritized to collectively focus on mechanisms of fibrosis resolution using rigorous methods designed to unveil, validate, and explore the therapeutic implications of endogenous resolvers.
Publikationsverlauf
Artikel online veröffentlicht:
19. August 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Selman M, King TE, Pardo A. American Thoracic Society, European Respiratory Society, American College of Chest Physicians. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 2001; 134 (02) 136-151
- 2 Bridges JP, Vladar EK, Kurche JS. et al. Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium. J Clin Invest 2025; 135 (01) e183836
- 3 Bamberg A, Redente EF, Groshong SD. et al. Protein tyrosine phosphatase-N13 promotes myofibroblast resistance to apoptosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2018; 198 (07) 914-927
- 4 Cha SI, Groshong SD, Frankel SK. et al. Compartmentalized expression of c-FLIP in lung tissues of patients with idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2010; 42 (02) 140-148
- 5 Wynes MW, Edelman BL, Kostyk AG. et al. Increased cell surface Fas expression is necessary and sufficient to sensitize lung fibroblasts to Fas ligation-induced apoptosis: implications for fibroblast accumulation in idiopathic pulmonary fibrosis. J Immunol 2011; 187 (01) 527-537
- 6 Song L, Li K, Chen H, Xie L. Cell cross-talk in alveolar microenvironment: from lung injury to fibrosis. Am J Respir Cell Mol Biol 2024; 71 (01) 30-42
- 7 Jannini-Sá YAP, Creyns B, Hogaboam CM, Parks WC, Hohmann MS. Macrophages in lung repair and fibrosis. Results Probl Cell Differ 2024; 74: 257-290
- 8 Jenkins RG, Moore BB, Chambers RC. et al; ATS Assembly on Respiratory Cell and Molecular Biology. An official American Thoracic Society Workshop Report: use of animal models for the preclinical assessment of potential therapies for pulmonary fibrosis. Am J Respir Cell Mol Biol 2017; 56 (05) 667-679
- 9 Kolb P, Upagupta C, Vierhout M. et al. The importance of interventional timing in the bleomycin model of pulmonary fibrosis. Eur Respir J 2020; 55 (06) 1901105
- 10 Richeldi L, du Bois RM, Raghu G. et al; INPULSIS Trial Investigators. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 2014; 370 (22) 2071-2082
- 11 King Jr TE, Bradford WZ, Castro-Bernardini S. et al; ASCEND Study Group. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 2014; 370 (22) 2083-2092
- 12 Raghu G, Richeldi L. Current approaches to the management of idiopathic pulmonary fibrosis. Respir Med 2017; 129: 24-30
- 13 Dakal TC, Dhabhai B, Pant A. et al. Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm 2024; 5 (06) e582
- 14 Arenas Gómez CM, Sabin KZ, Echeverri K. Wound healing across the animal kingdom: crosstalk between the immune system and the extracellular matrix. Dev Dyn 2020; 249 (07) 834-846
- 15 Yannas IV, Tzeranis DS. Mammals fail to regenerate organs when wound contraction drives scar formation. NPJ Regen Med 2021; 6 (01) 39
- 16 Gawriluk TR, Simkin J, Hacker CK. et al. Complex tissue regeneration in mammals is associated with reduced inflammatory cytokines and an influx of T cells. Front Immunol 2020; 11: 1695
- 17 Harty M, Neff AW, King MW, Mescher AL. Regeneration or scarring: an immunologic perspective. Dev Dyn 2003; 226 (02) 268-279
- 18 Thannickal VJ, Zhou Y, Gaggar A, Duncan SR. Fibrosis: ultimate and proximate causes. J Clin Invest 2014; 124 (11) 4673-4677
- 19 Jun JI, Lau LF. Resolution of organ fibrosis. J Clin Invest 2018; 128 (01) 97-107
- 20 Redente EF, Black BP, Backos DS. et al. Persistent, Progressive Pulmonary Fibrosis and Epithelial Remodeling in Mice. Am J Respir Cell Mol Biol 2021; 64 (06) 669-676
- 21 Hecker L, Logsdon NJ, Kurundkar D. et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med 2014; 6 (231) 231ra47
- 22 Penke LR, Speth JM, Huang SK, Fortier SM, Baas J, Peters-Golden M. KLF4 is a therapeutically tractable brake on fibroblast activation that promotes resolution of pulmonary fibrosis. JCI Insight 2022; 7 (16) e160688
- 23 Fortier SM, Walker NM, Penke LR. et al. MAPK phosphatase 1 inhibition of p38α within lung myofibroblasts is essential for spontaneous fibrosis resolution. J Clin Invest 2024; 134 (10) e172826
- 24 Maher TM. Interstitial Lung Disease: A Review. JAMA 2024; 331 (19) 1655-1665
- 25 Glasser SW, Hagood JS, Wong S, Taype CA, Madala SK, Hardie WD. Mechanisms of lung fibrosis resolution. Am J Pathol 2016; 186 (05) 1066-1077
- 26 Redente EF, Keith RC, Janssen W. et al. Tumor necrosis factor-α accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages. Am J Respir Cell Mol Biol 2014; 50 (04) 825-837
- 27 Kapetanaki MG, Mora AL, Rojas M. Influence of age on wound healing and fibrosis. J Pathol 2013; 229 (02) 310-322
- 28 Kato K, Logsdon NJ, Shin YJ. et al. Impaired myofibroblast dedifferentiation contributes to nonresolving fibrosis in aging. Am J Respir Cell Mol Biol 2020; 62 (05) 633-644
- 29 Zhou Y, Horowitz JC, Naba A. et al. Extracellular matrix in lung development, homeostasis and disease. Matrix Biol 2018; 73: 77-104
- 30 Pakshir P, Hinz B. The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol 2018; 68–69: 81-93
- 31 Cooley JC, Javkhlan N, Wilson JA. et al. Inhibition of antiapoptotic BCL-2 proteins with ABT-263 induces fibroblast apoptosis, reversing persistent pulmonary fibrosis. JCI Insight 2023; 8 (03) e163762
- 32 Artaechevarria X, Blanco D, Pérez-Martín D. et al. Longitudinal study of a mouse model of chronic pulmonary inflammation using breath hold gated micro-CT. Eur Radiol 2010; 20 (11) 2600-2608
- 33 Fattman CL, Tan RJ, Tobolewski JM, Oury TD. Increased sensitivity to asbestos-induced lung injury in mice lacking extracellular superoxide dismutase. Free Radic Biol Med 2006; 40 (04) 601-607
- 34 Hou J, Ji Q, Ji J. et al. Co-delivery of siPTPN13 and siNOX4 via (myo)fibroblast-targeting polymeric micelles for idiopathic pulmonary fibrosis therapy. Theranostics 2021; 11 (07) 3244-3261
- 35 Golan-Gerstl R, Wallach-Dayan SB, Zisman P, Cardoso WV, Goldstein RH, Breuer R. Cellular FLICE-like inhibitory protein deviates myofibroblast fas-induced apoptosis toward proliferation during lung fibrosis. Am J Respir Cell Mol Biol 2012; 47 (03) 271-279
- 36 Zhou Y, Huang X, Hecker L. et al. Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J Clin Invest 2013; 123 (03) 1096-1108
- 37 Ashley SL, Sisson TH, Wheaton AK. et al. Targeting inhibitor of apoptosis proteins protects from bleomycin-induced lung fibrosis. Am J Respir Cell Mol Biol 2016; 54 (04) 482-492
- 38 Redente EF, Chakraborty S, Sajuthi S. et al. Loss of Fas signaling in fibroblasts impairs homeostatic fibrosis resolution and promotes persistent pulmonary fibrosis. JCI Insight 2020; 6 (01) e141618
- 39 Tanaka T, Yoshimi M, Maeyama T, Hagimoto N, Kuwano K, Hara N. Resistance to Fas-mediated apoptosis in human lung fibroblast. Eur Respir J 2002; 20 (02) 359-368
- 40 Moodley YP, Caterina P, Scaffidi AK. et al. Comparison of the morphological and biochemical changes in normal human lung fibroblasts and fibroblasts derived from lungs of patients with idiopathic pulmonary fibrosis during FasL-induced apoptosis. J Pathol 2004; 202 (04) 486-495
- 41 Ajayi IO, Sisson TH, Higgins PD. et al. X-linked inhibitor of apoptosis regulates lung fibroblast resistance to Fas-mediated apoptosis. Am J Respir Cell Mol Biol 2013; 49 (01) 86-95
- 42 Lagares D, Santos A, Grasberger PE. et al. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci Transl Med 2017; 9 (420) eaal3765
- 43 Myers JL, Katzenstein AL. Epithelial necrosis and alveolar collapse in the pathogenesis of usual interstitial pneumonia. Chest 1988; 94 (06) 1309-1311
- 44 Kuhn III C, Boldt J, King Jr TE, Crouch E, Vartio T, McDonald JA. An immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis. Am Rev Respir Dis 1989; 140 (06) 1693-1703
- 45 Bochaton-Piallat ML, Gabbiani G, Hinz B. The myofibroblast in wound healing and fibrosis: answered and unanswered questions. F1000 Res 2016; 5: 5
- 46 Darby IA, Zakuan N, Billet F, Desmoulière A. The myofibroblast, a key cell in normal and pathological tissue repair. Cell Mol Life Sci 2016; 73 (06) 1145-1157
- 47 McKleroy W, Lee TH, Atabai K. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis. Am J Physiol Lung Cell Mol Physiol 2013; 304 (11) L709-L721
- 48 Pardo A, Selman M, Kaminski N. Approaching the degradome in idiopathic pulmonary fibrosis. Int J Biochem Cell Biol 2008; 40 (6–7): 1141-1155
- 49 Atabai K, Yang CD, Podolsky MJ. You say you want a resolution (of fibrosis). Am J Respir Cell Mol Biol 2020; 63 (04) 424-435
- 50 Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 2010; 30 (03) 245-257
- 51 Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 2012; 18 (07) 1028-1040
- 52 Gomes RN, Manuel F, Nascimento DS. The bright side of fibroblasts: molecular signature and regenerative cues in major organs. NPJ Regen Med 2021; 6 (01) 43
- 53 Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007; 8 (03) 221-233
- 54 McKeown S, Richter AG, O'Kane C, McAuley DF, Thickett DR. MMP expression and abnormal lung permeability are important determinants of outcome in IPF. Eur Respir J 2009; 33 (01) 77-84
- 55 Montaño M, Ramos C, González G, Vadillo F, Pardo A, Selman M. Lung collagenase inhibitors and spontaneous and latent collagenase activity in idiopathic pulmonary fibrosis and hypersensitivity pneumonitis. Chest 1989; 96 (05) 1115-1119
- 56 Menou A, Duitman J, Crestani B. The impaired proteases and anti-proteases balance in idiopathic pulmonary fibrosis. Matrix Biol 2018; 68–69: 382-403
- 57 Dancer RC, Wood AM, Thickett DR. Metalloproteinases in idiopathic pulmonary fibrosis. Eur Respir J 2011; 38 (06) 1461-1467
- 58 Podolsky MJ, Yang CD, Valenzuela CL. et al. Age-dependent regulation of cell-mediated collagen turnover. JCI Insight 2020; 5 (10) e137519
- 59 Podolsky MJ. et al. Genome-wide screens identify SEL1L as an intracellular rheostat controlling collagen turnover. bioRxiv, 2023
- 60 Yamauchi M, Sricholpech M. Lysine post-translational modifications of collagen. Essays Biochem 2012; 52: 113-133
- 61 Rosin NL, Sopel MJ, Falkenham A, Lee TD, Légaré JF. Disruption of collagen homeostasis can reverse established age-related myocardial fibrosis. Am J Pathol 2015; 185 (03) 631-642
- 62 Barry-Hamilton V, Spangler R, Marshall D. et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 2010; 16 (09) 1009-1017
- 63 Bundesmann MM, Wagner TE, Chow YH, Altemeier WA, Steinbach T, Schnapp LM. Role of urokinase plasminogen activator receptor-associated protein in mouse lung. Am J Respir Cell Mol Biol 2012; 46 (02) 233-239
- 64 Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol 2024; 25 (08) 617-638
- 65 Huang SK, Wettlaufer SH, Chung J, Peters-Golden M. Prostaglandin E2 inhibits specific lung fibroblast functions via selective actions of PKA and Epac-1. Am J Respir Cell Mol Biol 2008; 39 (04) 482-489
- 66 Clark JG, Kostal KM, Marino BA. Modulation of collagen production following bleomycin-induced pulmonary fibrosis in hamsters. Presence of a factor in lung that increases fibroblast prostaglandin E2 and cAMP and suppresses fibroblast proliferation and collagen production. J Biol Chem 1982; 257 (14) 8098-8105
- 67 Huang S, Wettlaufer SH, Hogaboam C, Aronoff DM, Peters-Golden M. Prostaglandin E(2) inhibits collagen expression and proliferation in patient-derived normal lung fibroblasts via E prostanoid 2 receptor and cAMP signaling. Am J Physiol Lung Cell Mol Physiol 2007; 292 (02) L405-L413
- 68 Huang SK, White ES, Wettlaufer SH. et al. Prostaglandin E(2) induces fibroblast apoptosis by modulating multiple survival pathways. FASEB J 2009; 23 (12) 4317-4326
- 69 White ES, Atrasz RG, Dickie EG. et al. Prostaglandin E(2) inhibits fibroblast migration by E-prostanoid 2 receptor-mediated increase in PTEN activity. Am J Respir Cell Mol Biol 2005; 32 (02) 135-141
- 70 Kolodsick JE, Peters-Golden M, Larios J, Toews GB, Thannickal VJ, Moore BB. Prostaglandin E2 inhibits fibroblast to myofibroblast transition via E. prostanoid receptor 2 signaling and cyclic adenosine monophosphate elevation. Am J Respir Cell Mol Biol 2003; 29 (05) 537-544
- 71 Kamio K, Liu X, Sugiura H. et al. Prostacyclin analogs inhibit fibroblast contraction of collagen gels through the cAMP-PKA pathway. Am J Respir Cell Mol Biol 2007; 37 (01) 113-120
- 72 Savla U, Appel HJ, Sporn PH, Waters CM. Prostaglandin E(2) regulates wound closure in airway epithelium. Am J Physiol Lung Cell Mol Physiol 2001; 280 (03) L421-L431
- 73 Maher TM, Evans IC, Bottoms SE. et al. Diminished prostaglandin E2 contributes to the apoptosis paradox in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2010; 182 (01) 73-82
- 74 Crocker IP, Cooper S, Ong SC, Baker PN. Differences in apoptotic susceptibility of cytotrophoblasts and syncytiotrophoblasts in normal pregnancy to those complicated with preeclampsia and intrauterine growth restriction. Am J Pathol 2003; 162 (02) 637-643
- 75 Peters-Golden M. Putting on the brakes: cyclic AMP as a multipronged controller of macrophage function. Sci Signal 2009; 2 (75) pe37
- 76 Serezani CH, Ballinger MN, Aronoff DM, Peters-Golden M. Cyclic AMP: master regulator of innate immune cell function. Am J Respir Cell Mol Biol 2008; 39 (02) 127-132
- 77 Woolson HD, Thomson VS, Rutherford C, Yarwood SJ, Palmer TM. Selective inhibition of cytokine-activated extracellular signal-regulated kinase by cyclic AMP via Epac1-dependent induction of suppressor of cytokine signalling-3. Cell Signal 2009; 21 (11) 1706-1715
- 78 Bourdonnay E, Zasłona Z, Penke LR. et al. Transcellular delivery of vesicular SOCS proteins from macrophages to epithelial cells blunts inflammatory signaling. J Exp Med 2015; 212 (05) 729-742
- 79 Penke LR, Ouchi H, Speth JM. et al. Transcriptional regulation of the IL-13Rα2 gene in human lung fibroblasts. Sci Rep 2020; 10 (01) 1083
- 80 Penke LR, Speth JM, Dommeti VL, White ES, Bergin IL, Peters-Golden M. FOXM1 is a critical driver of lung fibroblast activation and fibrogenesis. J Clin Invest 2018; 128 (06) 2389-2405
- 81 Wettlaufer SH, Penke LR, Okunishi K, Peters-Golden M. Distinct PKA regulatory subunits mediate PGE2 inhibition of TGFβ-1-stimulated collagen I translation and myofibroblast differentiation. Am J Physiol Lung Cell Mol Physiol 2017; 313 (04) L722-L731
- 82 Okunishi K, DeGraaf AJ, Zasłona Z, Peters-Golden M. Inhibition of protein translation as a novel mechanism for prostaglandin E2 regulation of cell functions. FASEB J 2014; 28 (01) 56-66
- 83 Sagana RL, Yan M, Cornett AM. et al. Phosphatase and tensin homologue on chromosome 10 (PTEN) directs prostaglandin E2-mediated fibroblast responses via regulation of E prostanoid 2 receptor expression. J Biol Chem 2009; 284 (47) 32264-32271
- 84 Fortier SM, Penke LR, Peters-Golden M. Illuminating the lung regenerative potential of prostanoids. Sci Adv 2022; 8 (12) eabp8322
- 85 Elnagdy M, Wang Y, Rodriguez W. et al. Increased expression of phosphodiesterase 4 in activated hepatic stellate cells promotes cytoskeleton remodeling and cell migration. J Pathol 2023; 261 (03) 361-371
- 86 Milara J, Ribera P, Marín S, Montero P, Roger I, Cortijo J. Phosphodiesterase 4 is overexpressed in keloid epidermal scars and its inhibition reduces keratinocyte fibrotic alterations. Mol Med 2024; 30 (01) 134
- 87 Wilborn J, Crofford LJ, Burdick MD, Kunkel SL, Strieter RM, Peters-Golden M. Cultured lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis have a diminished capacity to synthesize prostaglandin E2 and to express cyclooxygenase-2. J Clin Invest 1995; 95 (04) 1861-1868
- 88 Bärnthaler T, Theiler A, Zabini D. et al. Inhibiting eicosanoid degradation exerts antifibrotic effects in a pulmonary fibrosis mouse model and human tissue. J Allergy Clin Immunol 2020; 145 (03) 818-833.e11
- 89 Huang SK, Wettlaufer SH, Hogaboam CM. et al. Variable prostaglandin E2 resistance in fibroblasts from patients with usual interstitial pneumonia. Am J Respir Crit Care Med 2008; 177 (01) 66-74
- 90 Moore BB, Ballinger MN, White ES. et al. Bleomycin-induced E prostanoid receptor changes alter fibroblast responses to prostaglandin E2. J Immunol 2005; 174 (09) 5644-5649
- 91 Okunishi K, Sisson TH, Huang SK, Hogaboam CM, Simon RH, Peters-Golden M. Plasmin overcomes resistance to prostaglandin E2 in fibrotic lung fibroblasts by reorganizing protein kinase A signaling. J Biol Chem 2011; 286 (37) 32231-32243
- 92 Yokoyama U, Patel HH, Lai NC, Aroonsakool N, Roth DM, Insel PA. The cyclic AMP effector Epac integrates pro- and anti-fibrotic signals. Proc Natl Acad Sci U S A 2008; 105 (17) 6386-6391
- 93 Garrison G, Huang SK, Okunishi K. et al. Reversal of myofibroblast differentiation by prostaglandin E(2). Am J Respir Cell Mol Biol 2013; 48 (05) 550-558
- 94 Fortier SM, Penke LR, King D, Pham TX, Ligresti G, Peters-Golden M. Myofibroblast dedifferentiation proceeds via distinct transcriptomic and phenotypic transitions. JCI Insight 2021; 6 (06) e144799
- 95 Richeldi L, Azuma A, Cottin V. et al. Nerandomilast in patients with idiopathic pulmonary fibrosis. N Engl J Med 2025; 392 (22) 2193-2202
- 96 Maher TM, Assassi S, Azuma A. et al. Nerandomilast in patients with progressive pulmonary fibrosis. N Engl J Med 2025; 392 (22) 2203-2214
- 97 Maltseva O, Folger P, Zekaria D, Petridou S, Masur SK. Fibroblast growth factor reversal of the corneal myofibroblast phenotype. Invest Ophthalmol Vis Sci 2001; 42 (11) 2490-2495
- 98 Tsukamoto H, She H, Hazra S, Cheng J, Miyahara T. Anti-adipogenic regulation underlies hepatic stellate cell transdifferentiation. J Gastroenterol Hepatol 2006; 21 (Suppl. 03) S102-S105
- 99 Artaud-Macari E, Goven D, Brayer S. et al. Nuclear factor erythroid 2-related factor 2 nuclear translocation induces myofibroblastic dedifferentiation in idiopathic pulmonary fibrosis. Antioxid Redox Signal 2013; 18 (01) 66-79
- 100 Penke LRK, Speth J, Wettlaufer S, Draijer C, Peters-Golden M. Bortezomib inhibits lung fibrosis and fibroblast activation without proteasome inhibition. Am J Respir Cell Mol Biol 2022; 66 (01) 23-37
- 101 Hecker L, Jagirdar R, Jin T, Thannickal VJ. Reversible differentiation of myofibroblasts by MyoD. Exp Cell Res 2011; 317 (13) 1914-1921
- 102 Ju X, Wang K, Wang C, Zeng C, Wang Y, Yu J. Regulation of myofibroblast dedifferentiation in pulmonary fibrosis. Respir Res 2024; 25 (01) 284
- 103 Tan Q, Link PA, Meridew JA. et al. Spontaneous lung fibrosis resolution reveals novel antifibrotic regulators. Am J Respir Cell Mol Biol 2021; 64 (04) 453-464
- 104 Moore BB, Hogaboam CM. Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2008; 294 (02) L152-L160
- 105 Lam M, Mansell A, Tate MD. Preclinical mouse model of silicosis. Methods Mol Biol 2023; 2691: 111-120
- 106 El Agha E, Moiseenko A, Kheirollahi V. et al. Two-way conversion between lipogenic and myogenic fibroblastic phenotypes marks the progression and resolution of lung fibrosis. Cell Stem Cell 2017; 20 (04) 571
- 107 Guo JL, Griffin M, Yoon JK. et al. Histological signatures map anti-fibrotic factors in mouse and human lungs. Nature 2025; 641 (8064) 993-1004