Subscribe to RSS

DOI: 10.1055/a-2665-2313
Von Willebrand Factor as a Therapeutic Target in Thrombotic Disorders
Funding This work was financially supported by the Dutch Thrombosis Foundation (TSN grant #2018-01).

Abstract
Von Willebrand factor (VWF) plays an important role in primary hemostasis. Dysregulated plasma VWF levels are implicated in various pathological conditions. Reduced or dysfunctional VWF is associated with bleeding, known as von Willebrand disease. Whereas elevated plasma VWF levels may give rise to an increased risk of developing arterial thrombotic events. In general, antithrombotic strategies in arterial thrombosis primarily focus on inhibiting platelet aggregation; however, treatment failure, antiplatelet drug resistance, and adverse bleeding tendencies underscore the necessity for the development of more efficacious and safer therapeutic modalities. Targeting VWF presents an interesting therapeutic approach as it operates independently of platelet activation pathways for platelet-rich thrombus formation. Over time, several VWF inhibitors have progressed to clinical application for thrombosis management, with ongoing research endeavors exploring novel compounds targeting VWF. This review provides a comprehensive overview of the evolution of VWF-targeting therapeutic agents, elucidating their current developmental stages, clinical indications, and evaluating their respective advantages and limitations.
Publication History
Received: 17 February 2025
Accepted: 24 July 2025
Article published online:
11 August 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Leebeek FW, Eikenboom JC. Von Willebrand's disease. N Engl J Med 2016; 375 (21) 2067-2080
- 2 Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990; 346 (6287): 818-822
- 3 Cruz MA, Handin RI, Wise RJ. The interaction of the von Willebrand factor-A1 domain with platelet glycoprotein Ib/IX. The role of glycosylation and disulfide bonding in a monomeric recombinant A1 domain protein. J Biol Chem 1993; 268 (28) 21238-21245
- 4 Gilbert JC, DeFeo-Fraulini T, Hutabarat RM. et al. First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation 2007; 116 (23) 2678-2686
- 5 Arzamendi D, Dandachli F, Théorêt JF. et al. An anti-von Willebrand factor aptamer reduces platelet adhesion among patients receiving aspirin and clopidogrel in an ex vivo shear-induced arterial thrombosis. Clin Appl Thromb Hemost 2011; 17 (06) E70-E78
- 6 Sadler JE, Budde U, Eikenboom JC. et al; Working Party on von Willebrand Disease Classification. Update on the pathophysiology and classification of von Willebrand disease: a report of the subcommittee on von Willebrand Factor. J Thromb Haemost 2006; 4 (10) 2103-2114
- 7 Wieberdink RG, van Schie MC, Koudstaal PJ. et al. High von Willebrand factor levels increase the risk of stroke: the Rotterdam study. Stroke 2010; 41 (10) 2151-2156
- 8 Whincup PH, Danesh J, Walker M. et al. von Willebrand factor and coronary heart disease: prospective study and meta-analysis. Eur Heart J 2002; 23 (22) 1764-1770
- 9 Sonneveld MA, de Maat MP, Leebeek FW. Von Willebrand factor and ADAMTS13 in arterial thrombosis: a systematic review and meta-analysis. Blood Rev 2014; 28 (04) 167-178
- 10 Sanders YV, Eikenboom J, de Wee EM. et al; WiN Study Group. Reduced prevalence of arterial thrombosis in von Willebrand disease. J Thromb Haemost 2013; 11 (05) 845-854
- 11 Holm E, Osooli M, Steen Carlsson K, Berntorp E. Cardiovascular disease-related hospitalization and mortality among persons with von Willebrand disease: a nationwide register study in Sweden. Haemophilia 2019; 25 (01) 109-115
- 12 Seaman CD, Yabes J, Comer DM, Ragni MV. Does deficiency of von Willebrand factor protect against cardiovascular disease? Analysis of a national discharge register. J Thromb Haemost 2015; 13 (11) 1999-2003
- 13 Mihyawi N, Ajmal M, Fath AR, Bhattarai B, Yeneneh B. The cardioprotective potential of von Willebrand disease in ischemic heart disease. Tex Heart Inst J 2022; 49 (04) e207402
- 14 Bae ON. Targeting von Willebrand factor as a novel anti-platelet therapy; application of ARC1779, an Anti-vWF aptamer, against thrombotic risk. Arch Pharm Res 2012; 35 (10) 1693-1699
- 15 Ornelas A, Zacharias-Millward N, Menter DG. et al. Beyond COX-1: the effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev 2017; 36 (02) 289-303
- 16 Siller-Matula JM, Krumphuber J, Jilma B. Pharmacokinetic, pharmacodynamic and clinical profile of novel antiplatelet drugs targeting vascular diseases. Br J Pharmacol 2010; 159 (03) 502-517
- 17 Gum PA, Kottke-Marchant K, Poggio ED. et al. Profile and prevalence of aspirin resistance in patients with cardiovascular disease. Am J Cardiol 2001; 88 (03) 230-235
- 18 Lev EI, Patel RT, Maresh KJ. et al. Aspirin and clopidogrel drug response in patients undergoing percutaneous coronary intervention: the role of dual drug resistance. J Am Coll Cardiol 2006; 47 (01) 27-33
- 19 Kirac D, Yaman AE, Doran T, Mihmanli M, Keles EC. COX-1, COX-2 and CYP2C19 variations may be related to cardiovascular events due to acetylsalicylic acid resistance. Mol Biol Rep 2022; 49 (04) 3007-3014
- 20 Wang Y, Zhao X, Lin J. et al; CHANCE investigators. Association between CYP2C19 loss-of-function allele status and efficacy of clopidogrel for risk reduction among patients with minor stroke or transient ischemic attack. JAMA 2016; 316 (01) 70-78
- 21 Diener JL, Daniel Lagassé HA, Duerschmied D. et al. Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti-von Willebrand factor A1-domain aptamer ARC1779. J Thromb Haemost 2009; 7 (07) 1155-1162
- 22 Zhu S, Gilbert JC, Hatala P. et al. The development and characterization of a long acting anti-thrombotic von Willebrand factor (VWF) aptamer. J Thromb Haemost 2020; 18 (05) 1113-1123
- 23 Huang RH, Fremont DH, Diener JL, Schaub RG, Sadler JE. A structural explanation for the antithrombotic activity of ARC1172, a DNA aptamer that binds von Willebrand factor domain A1. Structure 2009; 17 (11) 1476-1484
- 24 Stoltenburg R, Reinemann C, Strehlitz B. SELEX–a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 2007; 24 (04) 381-403
- 25 Agency EM. European Public Assessment Report (EPAR) Macugen. 2007
- 26 Gragoudas ES, Adamis AP, Cunningham Jr ET, Feinsod M, Guyer DR. VEGF Inhibition Study in Ocular Neovascularization Clinical Trial Group. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 2004; 351 (27) 2805-2816
- 27 Mullard A. FDA approves second RNA aptamer. Nat Rev Drug Discov 2023; 22 (10) 774
- 28 Danzig CJ, Khanani AM, Loewenstein A. C5 inhibitor avacincaptad pegol treatment for geographic atrophy: a comprehensive review. Immunotherapy 2024; 16 (12) 779-790
- 29 Cataland SR, Peyvandi F, Mannucci PM. et al. Initial experience from a double-blind, placebo-controlled, clinical outcome study of ARC1779 in patients with thrombotic thrombocytopenic purpura. Am J Hematol 2012; 87 (04) 430-432
- 30 Mega JL, Simon T. Pharmacology of antithrombotic drugs: an assessment of oral antiplatelet and anticoagulant treatments. Lancet 2015; 386 (9990): 281-291
- 31 Siller-Matula JM, Merhi Y, Tanguay JF. et al. ARC15105 is a potent antagonist of von Willebrand factor mediated platelet activation and adhesion. Arterioscler Thromb Vasc Biol 2012; 32 (04) 902-909
- 32 Kovacevic KD, Buchtele N, Schoergenhofer C. et al. The aptamer BT200 effectively inhibits von Willebrand factor (VWF) dependent platelet function after stimulated VWF release by desmopressin or endotoxin. Sci Rep 2020; 10 (01) 11180
- 33 Jilma-Stohlawetz P, Gorczyca ME, Jilma B, Siller-Matula J, Gilbert JC, Knöbl P. Inhibition of von Willebrand factor by ARC1779 in patients with acute thrombotic thrombocytopenic purpura. Thromb Haemost 2011; 105 (03) 545-552
- 34 Markus HS, McCollum C, Imray C, Goulder MA, Gilbert J, King A. The von Willebrand inhibitor ARC1779 reduces cerebral embolization after carotid endarterectomy: a randomized trial. Stroke 2011; 42 (08) 2149-2153
- 35 Zhu S, Gilbert JC, Liang Z. et al. Potent and rapid reversal of the von Willebrand factor inhibitor aptamer BT200. J Thromb Haemost 2020; 18 (07) 1695-1704
- 36 Kovacevic KD, Jilma B, Zhu S. et al. von Willebrand factor predicts mortality in ACS patients treated with potent P2Y12 antagonists and is inhibited by aptamer BT200 ex vivo. Thromb Haemost 2020; 120 (09) 1282-1290
- 37 Kovacevic KD, Greisenegger S, Langer A. et al. The aptamer BT200 blocks von Willebrand factor and platelet function in blood of stroke patients. Sci Rep 2021; 11 (01) 3092
- 38 Kovacevic KD, Grafeneder J, Schörgenhofer C. et al. The von Willebrand Factor A-1 domain binding aptamer BT200 elevates plasma levels of VWF and Factor VIII: a first-in-human trial. Haematologica 2022; 107 (09) 2121-2132
- 39 Ay C, Pabinger I, Kovacevic KD. et al. The VWF binding aptamer rondoraptivon pegol increases platelet counts and VWF/FVIII in type 2B von Willebrand disease. Blood Adv 2022; 6 (18) 5467-5476
- 40 Ay C, Kovacevic KD, Kraemmer D. et al. The von Willebrand factor-binding aptamer rondaptivon pegol as a treatment for severe and nonsevere hemophilia A. Blood 2023; 141 (10) 1147-1158
- 41 Chion A, Byrne C, Atiq F. et al. The aptamer BT200 blocks interaction of K1405-K1408 in the VWF-A1 domain with macrophage LRP1. Blood 2024; 144 (13) 1445-1456
- 42 Sakai K, Someya T, Harada K, Yagi H, Matsui T, Matsumoto M. Novel aptamer to von Willebrand factor A1 domain (TAGX-0004) shows total inhibition of thrombus formation superior to ARC1779 and comparable to caplacizumab. Haematologica 2020; 105 (11) 2631-2638
- 43 Matsunaga KI, Kimoto M, Hirao I. High-affinity DNA aptamer generation targeting von Willebrand factor A1-domain by genetic alphabet expansion for systematic evolution of ligands by exponential enrichment using two types of libraries composed of five different bases. J Am Chem Soc 2017; 139 (01) 324-334
- 44 Nimjee SM, Dornbos III D, Pitoc GA. et al. Preclinical development of a vWF aptamer to limit thrombosis and engender arterial recanalization of occluded vessels. Mol Ther 2019; 27 (07) 1228-1241
- 45 Oney S, Nimjee SM, Layzer J. et al. Antidote-controlled platelet inhibition targeting von Willebrand factor with aptamers. Oligonucleotides 2007; 17 (03) 265-274
- 46 Nimjee SM, Lohrmann JD, Wang H. et al. Rapidly regulating platelet activity in vivo with an antidote controlled platelet inhibitor. Mol Ther 2012; 20 (02) 391-397
- 47 Shea SM, Thomas KA, Rassam RMG. et al. Dose-dependent von Willebrand factor inhibition by aptamer BB-031 correlates with thrombolysis in a microfluidic model of arterial occlusion. Pharmaceuticals (Basel) 2022; 15 (12) 1450
- 48 Anderson C, Huttinger A, Wheeler DG. et al. Abstract WP99: reversible VWF inhibitor reduces stroke volumes compared to TPA in canine model of large vessel occlusion stroke. Stroke 2020; 51: AWP99
- 49 Nimjee SM, Wheeler D, Nelson S. et al. Abstract 94: randomized, double-blind, placebo-controlled phase 1 study of Vwf-binding aptamer, Bb-031: safety, tolerability, pharmacokinetic and pharmacodynamic activity in healthy volunteers. Stroke 2023; 54: A94
- 50 Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256 (5517): 495-497
- 51 Sixma JJ, Sakariassen KS, Stel HV. et al. Functional domains on von Willebrand factor. Recognition of discrete tryptic fragments by monoclonal antibodies that inhibit interaction of von Willebrand factor with platelets and with collagen. J Clin Invest 1984; 74 (03) 736-744
- 52 Yokoyama K, Handa M, Oda A. et al. Characterization of the novel murine monoclonal anti-von Willebrand factor (vWf) antibody GUR76-23 which inhibits vWf interaction with alpha IIb beta 3 but not alpha v beta 3 integrin. Biochem Biophys Res Commun 1997; 234 (01) 147-152
- 53 Fujimura Y, Usami Y, Titani K. et al. Studies on anti-von Willebrand factor (vWF) monoclonal antibody NMC-4, which inhibits both ristocetin- and botrocetin-induced vWF binding to platelet glycoprotein Ib. Blood 1991; 77 (01) 113-120
- 54 Eto K, Isshiki T, Yamamoto H. et al. AJvW-2, an anti-vWF monoclonal antibody, inhibits enhanced platelet aggregation induced by high shear stress in platelet-rich plasma from patients with acute coronary syndromes. Arterioscler Thromb Vasc Biol 1999; 19 (04) 877-882
- 55 Kageyama S, Yamamoto H, Nagano M, Arisaka H, Kayahara T, Yoshimoto R. Anti-thrombotic effects and bleeding risk of AJvW-2, a monoclonal antibody against human von Willebrand factor. Br J Pharmacol 1997; 122 (01) 165-171
- 56 Kageyama S, Yamamoto H, Nakazawa H, Yoshimoto R. Anti-human vWF monoclonal antibody, AJvW-2 Fab, inhibits repetitive coronary artery thrombosis without bleeding time prolongation in dogs. Thromb Res 2001; 101 (05) 395-404
- 57 Kageyama S, Yamamoto H, Nakazawa H. et al. Pharmacokinetics and pharmacodynamics of AJW200, a humanized monoclonal antibody to von Willebrand factor, in monkeys. Arterioscler Thromb Vasc Biol 2002; 22 (01) 187-192
- 58 Kageyama S, Matsushita J, Yamamoto H. Effect of a humanized monoclonal antibody to von Willebrand factor in a canine model of coronary arterial thrombosis. Eur J Pharmacol 2002; 443 (1-3): 143-149
- 59 Machin SJC, C.; Ikemura, O.; Kageyama, S.; Mackie, I.J.; Talbot, J.A.; Ikeda, Y.; Gyotoku, Y. A humanized monoclonal antibody against vWF A1 domain inhibits vWF:RiCof activity and platelet adhesion in human volunteers. Oral communication: International Society on Thrombosis and Haemostasis; July 17th, 2003 2003; Birmingham, United Kingdom
- 60 Hoylaerts MF, Yamamoto H, Nuyts K, Vreys I, Deckmyn H, Vermylen J. von Willebrand factor binds to native collagen VI primarily via its A1 domain. Biochem J 1997; 324 (Pt 1): 185-191
- 61 Depraetere H, Viaene A, Deroo S, Vauterin S, Deckmyn H. Identification of peptides, selected by phage display technology, that inhibit von Willebrand factor binding to collagen. Blood 1998; 92 (11) 4207-4211
- 62 Wu D, Vanhoorelbeke K, Cauwenberghs N. et al. Inhibition of the von Willebrand (VWF)-collagen interaction by an antihuman VWF monoclonal antibody results in abolition of in vivo arterial platelet thrombus formation in baboons. Blood 2002; 99 (10) 3623-3628
- 63 Folts J. An in vivo model of experimental arterial stenosis, intimal damage, and periodic thrombosis. Circulation 1991; 83 (6, suppl): IV3-IV14
- 64 Staelens S, Desmet J, Ngo TH. et al. Humanization by variable domain resurfacing and grafting on a human IgG4, using a new approach for determination of non-human like surface accessible framework residues based on homology modelling of variable domains. Mol Immunol 2006; 43 (08) 1243-1257
- 65 De Meyer SF, Staelens S, Badenhorst PN. et al. Coronary artery in-stent stenosis persists despite inhibition of the von Willebrand factor–collagen interaction in baboons. Thromb Haemost 2007; 98 (06) 1343-1349
- 66 Zhao Y, Dong N, Shen F. et al. Two novel monoclonal antibodies to VWFA3 inhibit VWF-collagen and VWF-platelet interactions. J Thromb Haemost 2007; 5 (09) 1963-1970
- 67 Zhao YM, Jiang M, Ji SD. et al. Anti-human VWF monoclonal antibody SZ-123 prevents arterial thrombus formation by inhibiting VWF-collagen and VWF-platelet interactions in Rhesus monkeys. Biochem Pharmacol 2013; 85 (07) 945-953
- 68 Jiang M, Zhao Y, Shen F, Wang F, He Y, Ruan C. Epitope mapping of human VWF A3 recognized by monoclonal antibody SZ-123 and SZ-125 using MALDI mass spectrometry. Int J Hematol 2011; 94 (03) 241-247
- 69 Ji S, Jiang M, Yan B. et al. The chimeric monoclonal antibody MHCSZ-123 against human von Willebrand factor A3 domain inhibits high-shear arterial thrombosis in a Rhesus monkey model. J Hematol Oncol 2017; 10 (01) 111
- 70 Jovčevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs 2020; 34 (01) 11-26
- 71 Bartunek J, Barbato E, Heyndrickx G, Vanderheyden M, Wijns W, Holz JB. Novel antiplatelet agents: ALX-0081, a Nanobody directed towards von Willebrand factor. J Cardiovasc Transl Res 2013; 6 (03) 355-363
- 72 Ulrichts H, Silence K, Schoolmeester A. et al. Antithrombotic drug candidate ALX-0081 shows superior preclinical efficacy and safety compared with currently marketed antiplatelet drugs. Blood 2011; 118 (03) 757-765
- 73 Holz JB. The TITAN trial–assessing the efficacy and safety of an anti-von Willebrand factor nanobody in patients with acquired thrombotic thrombocytopenic purpura. Transfus Apher Sci 2012; 46 (03) 343-346
- 74 Peyvandi F, Scully M, Kremer Hovinga JA. et al; TITAN Investigators. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2016; 374 (06) 511-522
- 75 Bartunek J, Barbato E, Holz J-B. et al. Abstract 2009: ALX-0081 a Novel Anti-Thrombotic: Results of a Single-Dose Phase 1 Study in Healthy Volunteers and Further Development in Patients with Stable Angina Undergoing PCI. Circulation 2008; 118: S_656-S_656
- 76 Bartunek J, Barbato E, Vercruysse K. et al. Abstract 15084: safety and efficacy of anti-von Willebrand factor nanobody ALX-0081 in stable angina patients undergoing percutaneous coronary intervention. Circulation 2010; 122: A15084
- 77 Duggan S. Caplacizumab: first global approval. Drugs 2018; 78 (15) 1639-1642
- 78 van Loon JE, de Jaegere PP, Ulrichts H. et al. The in vitro effect of the new antithrombotic drug candidate ALX-0081 on blood samples of patients undergoing percutaneous coronary intervention. Thromb Haemost 2011; 106 (01) 165-171
- 79 STAFF W. ALX-0081. Development discontinued. 2011
- 80 Scully M, Cataland SR, Peyvandi F. et al; HERCULES Investigators. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2019; 380 (04) 335-346
- 81 Völker LA, Brinkkoetter PT, Cataland SR, Masias C. Five years of caplacizumab - lessons learned and remaining controversies in immune-mediated thrombotic thrombocytopenic purpura. J Thromb Haemost 2023; 21 (10) 2718-2725
- 82 de Maat S, Clark CC, Barendrecht AD. et al. Microlyse: a thrombolytic agent that targets VWF for clearance of microvascular thrombosis. Blood 2022; 139 (04) 597-607
- 83 Kretz CA. A micro-lyse goes a long way. Blood 2022; 139 (04) 477-479
- 84 Tersteeg C, de Maat S, De Meyer SF. et al. Plasmin cleavage of von Willebrand factor as an emergency bypass for ADAMTS13 deficiency in thrombotic microangiopathy. Circulation 2014; 129 (12) 1320-1331
- 85 van Moorsel MVA, de Maat S, Vercruysse K. et al. VWF-targeted thrombolysis to overcome rh-tPA resistance in experimental murine ischemic stroke models. Blood 2022; 140 (26) 2844-2848
- 86 Reininger AJ. The function of ultra-large von Willebrand factor multimers in high shear flow controlled by ADAMTS13. Hamostaseologie 2015; 35 (03) 225-233
- 87 Callewaert F, Roodt J, Ulrichts H. et al. Evaluation of efficacy and safety of the anti-VWF Nanobody ALX-0681 in a preclinical baboon model of acquired thrombotic thrombocytopenic purpura. Blood 2012; 120 (17) 3603-3610
- 88 Eerenberg ES, Levi M. The potential therapeutic benefit of targeting ADAMTS13 activity. Semin Thromb Hemost 2014; 40 (01) 28-33
- 89 Plaimauer B, Kremer Hovinga JA, Juno C. et al. Recombinant ADAMTS13 normalizes von Willebrand factor-cleaving activity in plasma of acquired TTP patients by overriding inhibitory antibodies. J Thromb Haemost 2011; 9 (05) 936-944
- 90 Administration USFD. FDA Approves First Treatment for Patients with Rare Inherited Blood Clotting Disorder. 2023
- 91 Heo YA. Apadamtase alfa: first approval. Drugs 2024; 84 (04) 467-472
- 92 Antoine G, Zimmermann K, Plaimauer B. et al. ADAMTS13 gene defects in two brothers with constitutional thrombotic thrombocytopenic purpura and normalization of von Willebrand factor-cleaving protease activity by recombinant human ADAMTS13. Br J Haematol 2003; 120 (05) 821-824
- 93 Kopić A, Benamara K, Piskernik C. et al. Preclinical assessment of a new recombinant ADAMTS-13 drug product (BAX930) for the treatment of thrombotic thrombocytopenic purpura. J Thromb Haemost 2016; 14 (07) 1410-1419
- 94 Plaimauer B, Scheiflinger F. Expression and characterization of recombinant human ADAMTS-13. Semin Hematol 2004; 41 (01) 24-33
- 95 Scully M, Knöbl P, Kentouche K. et al. Recombinant ADAMTS-13: first-in-human pharmacokinetics and safety in congenital thrombotic thrombocytopenic purpura. Blood 2017; 130 (19) 2055-2063
- 96 Scully M, Windyga J, Mellgård B. et al. OC 14.1 phase 3 prospective, randomized, controlled, open-label, multicenter, crossover study of recombinant ADAMTS13 in patients with congenital thrombotic thrombocytopenic purpura. Res Pract Thromb Haemost 2023; 7: 100533
- 97 Cataland S, Patel M, Mellgård B. et al. OC 14.2 pharmacokinetic characteristics of adamts13 in patients with congenital thrombotic thrombocytopenic purpura: interim results from a phase 3 randomized, controlled, open-label, crossover study. Res Pract Thromb Haemost 2023; 7: 100531
- 98 Coppo P, Patwari P, Mellgård B. et al. OC 14.4 recombinant ADAMTS13 prophylaxis in patients with congenital thrombotic thrombocytopenic purpura: interim analysis from phase 3B continuation study. Res Pract Thromb Haemost 2023; 7: 100534
- 99 Chen J, Reheman A, Gushiken FC. et al. N-acetylcysteine reduces the size and activity of von Willebrand factor in human plasma and mice. J Clin Invest 2011; 121 (02) 593-603
- 100 Bresette CA, Ashworth KJ, Di Paola J. et al. N-acetyl cysteine prevents arterial thrombosis in a dose-dependent manner in vitro and in mice. Arterioscler Thromb Vasc Biol 2024; 44 (02) e39-e53
- 101 Tersteeg C, Roodt J, Van Rensburg WJ. et al. N-acetylcysteine in preclinical mouse and baboon models of thrombotic thrombocytopenic purpura. Blood 2017; 129 (08) 1030-1038
- 102 Martinez de Lizarrondo S, Gakuba C, Herbig BA. et al. Potent thrombolytic effect of N-acetylcysteine on arterial thrombi. Circulation 2017; 136 (07) 646-660
- 103 Kim D, Shea SM, Ku DN. Lysis of arterial thrombi by perfusion of N,N′-diacetyl-L-cystine (DiNAC). PLoS One 2021; 16 (02) e0247496
- 104 Li GW, Rambally S, Kamboj J. et al. Treatment of refractory thrombotic thrombocytopenic purpura with N-acetylcysteine: a case report. Transfusion 2014; 54 (05) 1221-1224
- 105 Rottenstreich A, Hochberg-Klein S, Rund D, Kalish Y. The role of N-acetylcysteine in the treatment of thrombotic thrombocytopenic purpura. J Thromb Thrombolysis 2016; 41 (04) 678-683
- 106 Beyler O, Demir C. Use of n-acetylcysteine therapy in patients with relapsed refractory thrombotic thrombocytopenic purpura. Transfus Apher Sci 2023; 62 (04) 103713
- 107 Español I, Leal JD, Blanquer M. et al. N-Acetylcistein for thrombotic thrombocytopenic purpura: an observational case series study. Ann Hematol 2023; 102 (08) 2069-2075
- 108 Yarema M, Chopra P, Sivilotti MLA. et al. Anaphylactoid reactions to intravenous N-acetylcysteine during treatment for acetaminophen poisoning. J Med Toxicol 2018; 14 (02) 120-127
- 109 Komakula S, Bhatia R, Sahib A. et al. Safety and efficacy of N-acetylcysteine (NAC) as an adjunct to standard treatment in patients with acute ischemic stroke: a randomized controlled pilot trial (NACTLYS). Sci Rep 2024; 14 (01) 1103
- 110 Hennan JK, Swillo RE, Morgan GA. et al. Pharmacologic inhibition of platelet vWF-GPIb alpha interaction prevents coronary artery thrombosis. Thromb Haemost 2006; 95 (03) 469-475
- 111 Wadanoli M, Sako D, Shaw GD. et al. The von Willebrand factor antagonist (GPG-290) prevents coronary thrombosis without prolongation of bleeding time. Thromb Haemost 2007; 98 (02) 397-405
- 112 Brill A, Fuchs TA, Chauhan AK. et al. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 2011; 117 (04) 1400-1407
- 113 Alshaer W, Zureigat H, Al Karaki A. et al. siRNA: mechanism of action, challenges, and therapeutic approaches. Eur J Pharmacol 2021; 905: 174178
- 114 de Jong A, Dirven RJ, Oud JA, Tio D, van Vlijmen BJM, Eikenboom J. Correction of a dominant-negative von Willebrand factor multimerization defect by small interfering RNA-mediated allele-specific inhibition of mutant von Willebrand factor. J Thromb Haemost 2018; 16 (07) 1357-1368
- 115 de Jong A, Dirven RJ, Boender J. et al. Ex vivo improvement of a von Willebrand disease type 2A phenotype using an allele-specific small-interfering RNA. Thromb Haemost 2020; 120 (11) 1569-1579
- 116 de Jong A, Eikenboom J. Von Willebrand disease mutation spectrum and associated mutation mechanisms. Thromb Res 2017; 159: 65-75
- 117 Auton A, Brooks LD, Durbin RM. et al; 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 2015; 526 (7571): 68-74
- 118 Jongejan YK, Schrader Echeverri E, Dirven RJ. et al. Small interfering RNA-mediated allele-selective silencing of von Willebrand factor in vitro and in vivo. Blood Adv 2023; 7 (20) 6108-6119
- 119 Jongejan YK, Linthorst NA, Schrader Echeverri E. et al. Impact of allele-selective silencing of von Willebrand factor in mice based on a single nucleotide allelic difference in von Willebrand factor. Thromb Res 2024; 236: 201-208
- 120 Usta C, Turgut NT, Bedel A. How abciximab might be clinically useful. Int J Cardiol 2016; 222: 1074-1078
- 121 Cauwenberghs N, Meiring M, Vauterin S. et al. Antithrombotic effect of platelet glycoprotein Ib-blocking monoclonal antibody Fab fragments in nonhuman primates. Arterioscler Thromb Vasc Biol 2000; 20 (05) 1347-1353
- 122 Wu D, Meiring M, Kotze HF, Deckmyn H, Cauwenberghs N. Inhibition of platelet glycoprotein Ib, glycoprotein IIb/IIIa, or both by monoclonal antibodies prevents arterial thrombosis in baboons. Arterioscler Thromb Vasc Biol 2002; 22 (02) 323-328
- 123 Fontayne A, Meiring M, Lamprecht S. et al. The humanized anti-glycoprotein Ib monoclonal antibody h6B4-Fab is a potent and safe antithrombotic in a high shear arterial thrombosis model in baboons. Thromb Haemost 2008; 100 (04) 670-677
- 124 Phillips MD, Moake JL, Nolasco L, Turner N. Aurin tricarboxylic acid: a novel inhibitor of the association of von Willebrand factor and platelets. Blood 1988; 72 (06) 1898-1903
- 125 Strony J, Phillips M, Brands D, Moake J, Adelman B. Aurintricarboxylic acid in a canine model of coronary artery thrombosis. Circulation 1990; 81 (03) 1106-1114
- 126 Kawasaki T, Kaku S, Kohinata T. et al. Inhibition by aurintricarboxylic acid of von Willebrand factor binding to platelet GPIb, platelet retention, and thrombus formation in vivo. Am J Hematol 1994; 47 (01) 6-15
- 127 Strony J, Song A, Rusterholtz L, Adelman B. Aurintricarboxylic acid prevents acute rethrombosis in a canine model of arterial thrombosis. Arterioscler Thromb Vasc Biol 1995; 15 (03) 359-366
- 128 Matsuno H, Kozawa O, Niwa M, Uematsu T. Inhibition of von Willebrand factor binding to platelet GP Ib by a fractionated aurintricarboxylic acid prevents restenosis after vascular injury in hamster carotid artery. Circulation 1997; 96 (04) 1299-1304
- 129 Mullard A. FDA approves siRNA drug for haemophilia prophylaxis. Nat Rev Drug Discov 2025; 24 (05) 322