RSS-Feed abonnieren

DOI: 10.1055/a-2651-1937
Emerging Concepts in Therapeutic Interventions for Idiopathic Pulmonary Fibrosis
Funding This work was supported by the U.S. Department of Health and Human Services, National Institutes of Health, National Heart, Lung, and Blood Institute (grant nos.: 1K08HL171850 and T32HL007085).

Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare but devastating diagnosis for patients with only two approved drug therapies. Extensive preclinical studies have identified and characterized novel pathways driving IPF pathogenesis, and researchers have identified several new promising therapeutic targets to help treat IPF. However, translating these preclinical models into viable treatment modalities has proven challenging. This review will address the evolving nature of IPF research, examine the preclinical studies and their target pathways that have advanced to clinical trials, and address the translational gap that has limited the success of novel therapeutic trials for IPF.
Keywords
idiopathic pulmonary fibrosis - interstitial lung disease - anti-fibrotic - preclinical models - pulmonary fibrosisPublikationsverlauf
Accepted Manuscript online:
09. Juli 2025
Artikel online veröffentlicht:
12. August 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Maher TM, Bendstrup E, Dron L. et al. Global incidence and prevalence of idiopathic pulmonary fibrosis. Respir Res 2021; 22 (01) 197
- 2 Podolanczuk AJ, Thomson CC, Remy-Jardin M. et al. Idiopathic pulmonary fibrosis: state of the art for 2023. Eur Respir J 2023; 61 (04) 2200957
- 3 Raghu G, Chen SY, Yeh WS. et al. Idiopathic pulmonary fibrosis in US Medicare beneficiaries aged 65 years and older: incidence, prevalence, and survival, 2001-11. Lancet Respir Med 2014; 2 (07) 566-572
- 4 Nathan SD, Shlobin OA, Weir N. et al. Long-term course and prognosis of idiopathic pulmonary fibrosis in the new millennium. Chest 2011; 140 (01) 221-229
- 5 Petnak T, Lertjitbanjong P, Thongprayoon C, Moua T. Impact of antifibrotic therapy on mortality and acute exacerbation in idiopathic pulmonary fibrosis: a systematic review and meta-analysis. Chest 2021; 160 (05) 1751-1763
- 6 Moon SW, Kim SY, Chung MP. et al. Longitudinal changes in clinical features, management, and outcomes of idiopathic pulmonary fibrosis. a nationwide cohort study. Ann Am Thorac Soc 2021; 18 (05) 780-787
- 7 Suissa S, Suissa K. Antifibrotics and reduced mortality in idiopathic pulmonary fibrosis: immortal time bias. Am J Respir Crit Care Med 2023; 207 (01) 105-109
- 8 Behr J, Prasse A, Wirtz H. et al. Survival and course of lung function in the presence or absence of antifibrotic treatment in patients with idiopathic pulmonary fibrosis: long-term results of the INSIGHTS-IPF registry. Eur Respir J 2020; 56 (02) 1902279
- 9 Hozumi H, Miyashita K, Nakatani E. et al. Antifibrotics and mortality in idiopathic pulmonary fibrosis: external validity and avoidance of immortal time bias. Respir Res 2024; 25 (01) 293
- 10 Lynch DA, Sverzellati N, Travis WD. et al. Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper. Lancet Respir Med 2018; 6 (02) 138-153
- 11 Lee KS, Han J, Wada N. et al. Imaging of pulmonary fibrosis: an update, from the AJR special series on imaging of fibrosis. AJR Am J Roentgenol 2024; 222 (02) e2329119
- 12 Plantier L, Cazes A, Dinh-Xuan AT, Bancal C, Marchand-Adam S, Crestani B. Physiology of the lung in idiopathic pulmonary fibrosis. Eur Respir Rev 2018; 27 (147) 170062
- 13 Raghu G, Mageto YN, Lockhart D, Schmidt RA, Wood DE, Godwin JD. The accuracy of the clinical diagnosis of new-onset idiopathic pulmonary fibrosis and other interstitial lung disease: A prospective study. Chest 1999; 116 (05) 1168-1174
- 14 Guenther A, Krauss E, Tello S. et al. The European IPF registry (eurIPFreg): baseline characteristics and survival of patients with idiopathic pulmonary fibrosis. Respir Res 2018; 19 (01) 141
- 15 Raghu G, Ghazipura M, Fleming TR. et al. Meaningful endpoints for idiopathic pulmonary fibrosis (IPF) clinical trials: emphasis on ‘feels, functions, survives’. report of a collaborative discussion in a symposium with direct engagement from representatives of patients, investigators, the National Institutes of Health, a patient advocacy organization, and a regulatory agency. Am J Respir Crit Care Med 2024; 209 (06) 647-669
- 16 Mei Q, Liu Z, Zuo H, Yang Z, Qu J. Idiopathic pulmonary fibrosis: an update on pathogenesis. Front Pharmacol 2022; 12: 797292
- 17 Bridges JP, Vladar EK, Kurche JS. et al. Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium. J Clin Invest 2025; 135 (01) e183836
- 18 Kolanko E, Cargnoni A, Papait A, Silini AR, Czekaj P, Parolini O. The evolution of in vitro models of lung fibrosis: promising prospects for drug discovery. Eur Respir Rev 2024; 33 (171) 230127
- 19 Koziol-White C, Gebski E, Cao G, Panettieri Jr RA. Precision cut lung slices: an integrated ex vivo model for studying lung physiology, pharmacology, disease pathogenesis and drug discovery. Respir Res 2024; 25 (01) 231
- 20 B. Moore B, Lawson WE, Oury TD, Sisson TH, Raghavendran K, Hogaboam CM. Animal models of fibrotic lung disease. Am J Respir Cell Mol Biol 2013; 49 (02) 167-179
- 21 Jenkins RG, Moore BB, Chambers RC. et al; ATS Assembly on Respiratory Cell and Molecular Biology. An official American Thoracic Society Workshop Report: use of animal models for the preclinical assessment of potential therapies for pulmonary fibrosis. Am J Respir Cell Mol Biol 2017; 56 (05) 667-679
- 22 Allawzi A, Elajaili H, Redente EF, Nozik-Grayck E. Oxidative toxicology of bleomycin: role of the extracellular redox environment. Curr Opin Toxicol 2019; 13: 68-73
- 23 Kolb P, Upagupta C, Vierhout M. et al. The importance of interventional timing in the bleomycin model of pulmonary fibrosis. Eur Respir J 2020; 55 (06) 1901105
- 24 Redente EF, Black BP, Backos DS. et al. Persistent, progressive pulmonary fibrosis and epithelial remodeling in mice. Am J Respir Cell Mol Biol 2021; 64 (06) 669-676
- 25 Degryse AL, Tanjore H, Xu XC. et al. Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2010; 299 (04) L442-L452
- 26 Izbicki G, Segel MJ, Christensen TG, Conner MW, Breuer R. Time course of bleomycin-induced lung fibrosis. Int J Exp Pathol 2002; 83 (03) 111-119
- 27 Fisher M, Nathan SD, Hill C. et al. Predicting life expectancy for pirfenidone in idiopathic pulmonary fibrosis. J Manag Care Spec Pharm 2017; 23 (3-b, suppl): S17-S24
- 28 Margaritopoulos GA, Trachalaki A, Wells AU. et al. Pirfenidone improves survival in IPF: results from a real-life study. BMC Pulm Med 2018; 18 (01) 177
- 29 Rogliani P, Calzetta L, Cavalli F, Matera MG, Cazzola M. Pirfenidone, nintedanib and N-acetylcysteine for the treatment of idiopathic pulmonary fibrosis: a systematic review and meta-analysis. Pulm Pharmacol Ther 2016; 40: 95-103
- 30 Lancaster L, Crestani B, Hernandez P. et al. Safety and survival data in patients with idiopathic pulmonary fibrosis treated with nintedanib: pooled data from six clinical trials. BMJ Open Respir Res 2019; 6 (01) e000397
- 31 Nathan SD, Albera C, Bradford WZ. et al. Effect of pirfenidone on mortality: pooled analyses and meta-analyses of clinical trials in idiopathic pulmonary fibrosis. Lancet Respir Med 2017; 5 (01) 33-41
- 32 Shah M, Foreman DM, Ferguson MW. Neutralising antibody to TGF-beta 1,2 reduces cutaneous scarring in adult rodents. J Cell Sci 1994; 107 (Pt 5): 1137-1157
- 33 Cordeiro MF, Mead A, Ali RR. et al. Novel antisense oligonucleotides targeting TGF-beta inhibit in vivo scarring and improve surgical outcome. Gene Ther 2003; 10 (01) 59-71
- 34 Bergeron A, Soler P, Kambouchner M. et al. Cytokine profiles in idiopathic pulmonary fibrosis suggest an important role for TGF-beta and IL-10. Eur Respir J 2003; 22 (01) 69-76
- 35 Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest 1997; 100 (04) 768-776
- 36 Lee CG, Cho SJ, Kang MJ. et al. Early growth response gene 1-mediated apoptosis is essential for transforming growth factor beta1-induced pulmonary fibrosis. J Exp Med 2004; 200 (03) 377-389
- 37 Warshamana GS, Pociask DA, Fisher KJ, Liu JY, Sime PJ, Brody AR. Titration of non-replicating adenovirus as a vector for transducing active TGF-beta1 gene expression causing inflammation and fibrogenesis in the lungs of C57BL/6 mice. Int J Exp Pathol 2002; 83 (04) 183-201
- 38 Khalil N, O'Connor RN, Unruh HW. et al. Increased production and immunohistochemical localization of transforming growth factor-beta in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 1991; 5 (02) 155-162
- 39 Enomoto Y, Katsura H, Fujimura T. et al. Autocrine TGF-β-positive feedback in profibrotic AT2-lineage cells plays a crucial role in non-inflammatory lung fibrogenesis. Nat Commun 2023; 14 (01) 4956
- 40 Huse M, Muir TW, Xu L, Chen YG, Kuriyan J, Massagué J. The TGF beta receptor activation process: an inhibitor- to substrate-binding switch. Mol Cell 2001; 8 (03) 671-682
- 41 Hu B, Wu Z, Phan SH. Smad3 mediates transforming growth factor-beta-induced alpha-smooth muscle actin expression. Am J Respir Cell Mol Biol 2003; 29 (3 Pt 1): 397-404
- 42 Meng XM, Huang XR, Xiao J. et al. Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro. Kidney Int 2012; 81 (03) 266-279
- 43 Zhao Y, Geverd DA. Regulation of Smad3 expression in bleomycin-induced pulmonary fibrosis: a negative feedback loop of TGF-beta signaling. Biochem Biophys Res Commun 2002; 294 (02) 319-323
- 44 Zhao J, Shi W, Wang YL. et al. Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol 2002; 282 (03) L585-L593
- 45 Serini G, Gabbiana G. Modulation of alpha-smooth muscle actin expression in fibroblasts by transforming growth factor-beta isoforms: an in vivo and in vitro study. Wound Repair Regen 1996; 4 (02) 278-287
- 46 Degryse AL, Tanjore H, Xu XC. et al. TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar injury and fibroblast recruitment. Am J Physiol Lung Cell Mol Physiol 2011; 300 (06) L887-L897
- 47 Xiao L, Du Y, Shen Y, He Y, Zhao H, Li Z. TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ERK pathway. Front Biosci (Landmark Ed) 2012; 17 (07) 2667-2674
- 48 Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 2007; 293 (03) L525-L534
- 49 Stewart AG, Thomas B, Koff J. TGF-β: master regulator of inflammation and fibrosis. Respirology 2018; 23 (12) 1096-1097
- 50 Doi H, Atsumi J, Baratz D, Miyamoto Y. A phase I study of TRK-250, a Novel siRNA-based oligonucleotide, in patients with idiopathic pulmonary fibrosis. J Aerosol Med Pulm Drug Deliv 2023; 36 (06) 300-308
- 51 Ma Z, Zhao C, Chen Q. et al. Antifibrotic effects of a novel pirfenidone derivative in vitro and in vivo. Pulm Pharmacol Ther 2018; 53: 100-106
- 52 Hirano A, Kanehiro A, Ono K. et al. Pirfenidone modulates airway responsiveness, inflammation, and remodeling after repeated challenge. Am J Respir Cell Mol Biol 2006; 35 (03) 366-377
- 53 Oku H, Shimizu T, Kawabata T. et al. Antifibrotic action of pirfenidone and prednisolone: different effects on pulmonary cytokines and growth factors in bleomycin-induced murine pulmonary fibrosis. Eur J Pharmacol 2008; 590 (1-3): 400-408
- 54 Molina-Molina M, Machahua-Huamani C, Vicens-Zygmunt V. et al. Anti-fibrotic effects of pirfenidone and rapamycin in primary IPF fibroblasts and human alveolar epithelial cells. BMC Pulm Med 2018; 18 (01) 63
- 55 Gurujeyalakshmi G, Hollinger MA, Giri SN. Pirfenidone inhibits PDGF isoforms in bleomycin hamster model of lung fibrosis at the translational level. Am J Physiol 1999; 276 (02) L311-L318
- 56 Yu W, Guo F, Song X. Effects and mechanisms of pirfenidone, prednisone and acetylcysteine on pulmonary fibrosis in rat idiopathic pulmonary fibrosis models. Pharm Biol 2017; 55 (01) 450-455
- 57 Ruwanpura SM, Thomas BJ, Bardin PG. Pirfenidone: molecular mechanisms and potential clinical applications in lung disease. Am J Respir Cell Mol Biol 2020; 62 (04) 413-422
- 58 Noble PW, Albera C, Bradford WZ. et al; CAPACITY Study Group. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 2011; 377 (9779): 1760-1769
- 59 King Jr TE, Bradford WZ, Castro-Bernardini S. et al; ASCEND Study Group. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 2014; 370 (22) 2083-2092
- 60 Noble PW, Albera C, Bradford WZ. et al. Pirfenidone for idiopathic pulmonary fibrosis: analysis of pooled data from three multinational phase 3 trials. Eur Respir J 2016; 47 (01) 243-253
- 61 West A, Chaudhuri N, Barczyk A. et al. Inhaled pirfenidone solution (AP01) for IPF: a randomised, open-label, dose-response trial. Thorax 2023; 78 (09) 882-889
- 62 PureTech's Deupirfenidone (LYT-100) Slowed Lung Function Decline in People with Idiopathic Pulmonary Fibrosis. (IPF) as measured by forced vital capacity (FVC), achieving the primary and key secondary endpoints in the ELEVATE IPF phase 2b. Trial 2024;2024. Accessed March 26, 2025 at: https://news.puretechhealth.com/news-releases/news-release-details/puretechs-deupirfenidone-lyt-100-slowed-lung-function-decline
- 63 Chen MC, Korth CC, Harnett MD, Elenko E, Lickliter JD. A randomized phase 1 evaluation of deupirfenidone, a novel deuterium-containing drug candidate for interstitial lung disease and other inflammatory and fibrotic diseases. Clin Pharmacol Drug Dev 2022; 11 (02) 220-234
- 64 Antoniades HN, Bravo MA, Avila RE. et al. Platelet-derived growth factor in idiopathic pulmonary fibrosis. J Clin Invest 1990; 86 (04) 1055-1064
- 65 Takamura N, Renaud L, da Silveira WA, Feghali-Bostwick C. PDGF promotes dermal fibroblast activation via a novel mechanism mediated by signaling through MCHR1. Front Immunol 2021; 12: 745308
- 66 Kishi M, Aono Y, Sato S. et al. Blockade of platelet-derived growth factor receptor-β, not receptor-α ameliorates bleomycin-induced pulmonary fibrosis in mice. PLoS One 2018; 13 (12) e0209786
- 67 Zhou Y, Ling T, Shi W. Current state of signaling pathways associated with the pathogenesis of idiopathic pulmonary fibrosis. Respir Res 2024; 25 (01) 245
- 68 Joannes A, Brayer S, Besnard V. et al. FGF9 and FGF18 in idiopathic pulmonary fibrosis promote survival and migration and inhibit myofibroblast differentiation of human lung fibroblasts in vitro. Am J Physiol Lung Cell Mol Physiol 2016; 310 (07) L615-L629
- 69 Barratt SL, Flower VA, Pauling JD, Millar AB. VEGF (vascular endothelial growth factor) and fibrotic lung disease. Int J Mol Sci 2018; 19 (05) 1269
- 70 Murray LA, Habiel DM, Hohmann M. et al. Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis. JCI Insight 2017; 2 (16) e92192
- 71 Pan L, Cheng Y, Yang W. et al. Nintedanib ameliorates bleomycin-induced pulmonary fibrosis, inflammation, apoptosis, and oxidative stress by modulating PI3K/Akt/mTOR pathway in mice. Inflammation 2023; 46 (04) 1531-1542
- 72 Wollin L, Maillet I, Quesniaux V, Holweg A, Ryffel B. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J Pharmacol Exp Ther 2014; 349 (02) 209-220
- 73 Richeldi L, du Bois RM, Raghu G. et al; INPULSIS Trial Investigators. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 2014; 370 (22) 2071-2082
- 74 Hu M, Che P, Han X. et al. Therapeutic targeting of SRC kinase in myofibroblast differentiation and pulmonary fibrosis. J Pharmacol Exp Ther 2014; 351 (01) 87-95
- 75 Lu YZ, Liang LM, Cheng PP. et al. VEGF/Src signaling mediated pleural barrier damage and increased permeability contributes to subpleural pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2021; 320 (06) L990-L1004
- 76 Kypta RM, Goldberg Y, Ulug ET, Courtneidge SA. Association between the PDGF receptor and members of the src family of tyrosine kinases. Cell 1990; 62 (03) 481-492
- 77 Kilkenny DM, Rocheleau JV, Price J, Reich MB, Miller GG. c-Src regulation of fibroblast growth factor-induced proliferation in murine embryonic fibroblasts. J Biol Chem 2003; 278 (19) 17448-17454
- 78 Wilde A, Beattie EC, Lem L. et al. EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 1999; 96 (05) 677-687
- 79 Ahangari F, Becker C, Foster DG. et al. Saracatinib, a selective Src kinase inhibitor, blocks fibrotic responses in preclinical models of pulmonary fibrosis. Am J Respir Crit Care Med 2022; 206 (12) 1463-1479
- 80 Yanagihara T, Tsubouchi K, Gholiof M. et al. Connective-tissue growth factor contributes to TGF-β1-induced lung fibrosis. Am J Respir Cell Mol Biol 2022; 66 (03) 260-270
- 81 Kono M, Nakamura Y, Suda T. et al. Plasma CCN2 (connective tissue growth factor; CTGF) is a potential biomarker in idiopathic pulmonary fibrosis (IPF). Clin Chim Acta 2011; 412 (23-24): 2211-2215
- 82 Sonnylal S, Shi-Wen X, Leoni P. et al. Selective expression of connective tissue growth factor in fibroblasts in vivo promotes systemic tissue fibrosis. Arthritis Rheum 2010; 62 (05) 1523-1532
- 83 Tam AYY, Horwell AL, Trinder SL. et al. Selective deletion of connective tissue growth factor attenuates experimentally-induced pulmonary fibrosis and pulmonary arterial hypertension. Int J Biochem Cell Biol 2021; 134: 105961
- 84 Wang Q, Usinger W, Nichols B. et al. Cooperative interaction of CTGF and TGF-β in animal models of fibrotic disease. Fibrogenesis Tissue Repair 2011; 4 (01) 4
- 85 Richeldi L, Fernández Pérez ER, Costabel U. et al. Pamrevlumab, an anti-connective tissue growth factor therapy, for idiopathic pulmonary fibrosis (PRAISE): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Respir Med 2020; 8 (01) 25-33
- 86 Raghu G, Richeldi L, Fernández Pérez ER. et al; ZEPHYRUS-1 Study Investigators. Pamrevlumab for idiopathic pulmonary fibrosis: the ZEPHYRUS-1 randomized clinical trial. JAMA 2024; 332 (05) 380-389
- 87 Song LL, Zhou HY, Ye PP. et al. A first-in-human phase I study of SHR-1906, a humanized monoclonal antibody against connective tissue growth factor, in healthy participants. Clin Transl Sci 2023; 16 (12) 2604-2613
- 88 She YX, Yu QY, Tang XX. Role of interleukins in the pathogenesis of pulmonary fibrosis. Cell Death Discov 2021; 7 (01) 52
- 89 Ng B, Dong J, D'Agostino G. et al. Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Sci Transl Med 2019; 11 (511) eaaw1237
- 90 He Y, Shen X, Zhai K, Nian S. Advances in understanding the role of interleukins in pulmonary fibrosis (review). Exp Ther Med 2024; 29 (02) 25
- 91 Martinez FJ, de Andrade JA, Anstrom KJ, King Jr TE, Raghu G. Idiopathic Pulmonary Fibrosis Clinical Research Network. Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med 2014; 370 (22) 2093-2101
- 92 Raghu G, Brown KK, Costabel U. et al. Treatment of idiopathic pulmonary fibrosis with etanercept: an exploratory, placebo-controlled trial. Am J Respir Crit Care Med 2008; 178 (09) 948-955
- 93 Mozaffarian A, Brewer AW, Trueblood ES. et al. Mechanisms of oncostatin M-induced pulmonary inflammation and fibrosis. J Immunol 2008; 181 (10) 7243-7253
- 94 Wong S, Botelho FM, Rodrigues RM, Richards CD. Oncostatin M overexpression induces matrix deposition, STAT3 activation, and SMAD1 Dysregulation in lungs of fibrosis-resistant BALB/c mice. Lab Invest 2014; 94 (09) 1003-1016
- 95 Nagahama KY, Togo S, Holz O. et al. Oncostatin M modulates fibroblast function via signal transducers and activators of transcription proteins-3. Am J Respir Cell Mol Biol 2013; 49 (04) 582-591
- 96 Sassone-Corsi P. The cyclic AMP pathway. Cold Spring Harb Perspect Biol 2012; 4 (12) a011148
- 97 Lambers C, Boehm PM, Karabacak Y. et al. Combined activation of guanylate cyclase and cyclic AMP in lung fibroblasts as a novel therapeutic concept for lung fibrosis. BioMed Res Int 2019; 2019: 1345402
- 98 Herrmann FE, Hesslinger C, Wollin L, Nickolaus P. BI 1015550 is a PDE4B inhibitor and a clinical drug candidate for the oral treatment of idiopathic pulmonary fibrosis. Front Pharmacol 2022; 13: 838449
- 99 Liu X, Ostrom RS, Insel PA. cAMP-elevating agents and adenylyl cyclase overexpression promote an antifibrotic phenotype in pulmonary fibroblasts. Am J Physiol Cell Physiol 2004; 286 (05) C1089-C1099
- 100 Insel PA, Murray F, Yokoyama U. et al. cAMP and EPAC in the regulation of tissue fibrosis. Br J Pharmacol 2012; 166 (02) 447-456
- 101 Weng L, Wang W, Su X. et al. The Effect of cAMP-PKA activation on TGF-β1-induced profibrotic signaling. Cell Physiol Biochem 2015; 36 (05) 1911-1927
- 102 Clapp LH, Finney P, Turcato S, Tran S, Rubin LJ, Tinker A. Differential effects of stable prostacyclin analogs on smooth muscle proliferation and cyclic AMP generation in human pulmonary artery. Am J Respir Cell Mol Biol 2002; 26 (02) 194-201
- 103 Liu X, Li F, Sun SQ. et al. Fibroblast-specific expression of AC6 enhances beta-adrenergic and prostacyclin signaling and blunts bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2010; 298 (06) L819-L829
- 104 Clapp LH, Gurung R. The mechanistic basis of prostacyclin and its stable analogues in pulmonary arterial hypertension: role of membrane versus nuclear receptors. Prostaglandins Other Lipid Mediat 2015; 120: 56-71
- 105 Nikitopoulou I, Manitsopoulos N, Kotanidou A. et al. Orotracheal treprostinil administration attenuates bleomycin-induced lung injury, vascular remodeling, and fibrosis in mice. Pulm Circ 2019; 9 (04) 2045894019881954
- 106 Lambers C, Roth M, Jaksch P. et al. Treprostinil inhibits proliferation and extracellular matrix deposition by fibroblasts through cAMP activation. Sci Rep 2018; 8 (01) 1087
- 107 Waxman A, Restrepo-Jaramillo R, Thenappan T. et al. Inhaled treprostinil in pulmonary hypertension due to interstitial lung disease. N Engl J Med 2021; 384 (04) 325-334
- 108 Nathan SD, Behr J, Cottin V. et al. Study design and rationale for the TETON phase 3, randomised, controlled clinical trials of inhaled treprostinil in the treatment of idiopathic pulmonary fibrosis. BMJ Open Respir Res 2022; 9 (01) e001310
- 109 Cortijo J, Iranzo A, Milara X. et al. Roflumilast, a phosphodiesterase 4 inhibitor, alleviates bleomycin-induced lung injury. Br J Pharmacol 2009; 156 (03) 534-544
- 110 Sisson TH, Christensen PJ, Muraki Y. et al. Phosphodiesterase 4 inhibition reduces lung fibrosis following targeted type II alveolar epithelial cell injury. Physiol Rep 2018; 6 (12) e13753
- 111 Kim SW, Lim JY, Rhee CK. et al. Effect of roflumilast, novel phosphodiesterase-4 inhibitor, on lung chronic graft-versus-host disease in mice. Exp Hematol 2016; 44 (05) 332-341.e4
- 112 Kolb M, Crestani B, Maher TM. Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis. Eur Respir Rev 2023; 32 (167) 220206
- 113 Richeldi L, Azuma A, Cottin V. et al; 1305-0013 Trial Investigators. Trial of a preferential phosphodiesterase 4B inhibitor for idiopathic pulmonary fibrosis. N Engl J Med 2022; 386 (23) 2178-2187
- 114 Boehringer's nerandomilast meets primary endpoint in pivotal phase-III FIBRONEER-IPF study. 09/16/2024, 2024. Accessed March 26, 2025 at: https://www.boehringer-ingelheim.com/us/topline-results-boehringers-phase-iii-ipf-study
- 115 Schinner E, Wetzl V, Schramm A. et al. Inhibition of the TGFβ signalling pathway by cGMP and cGMP-dependent kinase I in renal fibrosis. FEBS Open Bio 2017; 7 (04) 550-561
- 116 Beyer C, Zenzmaier C, Palumbo-Zerr K. et al. Stimulation of the soluble guanylate cyclase (sGC) inhibits fibrosis by blocking non-canonical TGFβ signalling. Ann Rheum Dis 2015; 74 (07) 1408-1416
- 117 Hemnes AR, Zaiman A, Champion HC. PDE5A inhibition attenuates bleomycin-induced pulmonary fibrosis and pulmonary hypertension through inhibition of ROS generation and RhoA/Rho kinase activation. Am J Physiol Lung Cell Mol Physiol 2008; 294 (01) L24-L33
- 118 Zisman DA, Schwarz M, Anstrom KJ, Collard HR, Flaherty KR, Hunninghake GW. Idiopathic Pulmonary Fibrosis Clinical Research Network. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. N Engl J Med 2010; 363 (07) 620-628
- 119 Kolb M, Raghu G, Wells AU. et al; INSTAGE Investigators. Nintedanib plus sildenafil in patients with idiopathic pulmonary fibrosis. N Engl J Med 2018; 379 (18) 1722-1731
- 120 Dagamajalu S, Rex DAB, Gopalakrishnan L. et al. A network map of endothelin mediated signaling pathway. J Cell Commun Signal 2021; 15 (02) 277-282
- 121 Gallelli L, Pelaia G, D'Agostino B. et al. Endothelin-1 induces proliferation of human lung fibroblasts and IL-11 secretion through an ET(A) receptor-dependent activation of MAP kinases. J Cell Biochem 2005; 96 (04) 858-868
- 122 Giaid A, Polak JM, Gaitonde V. et al. Distribution of endothelin-like immunoreactivity and mRNA in the developing and adult human lung. Am J Respir Cell Mol Biol 1991; 4 (01) 50-58
- 123 Saleh D, Furukawa K, Tsao MS. et al. Elevated expression of endothelin-1 and endothelin-converting enzyme-1 in idiopathic pulmonary fibrosis: possible involvement of proinflammatory cytokines. Am J Respir Cell Mol Biol 1997; 16 (02) 187-193
- 124 Pulito-Cueto V, Genre F, López-Mejías R. et al. Endothelin-1 as a biomarker of idiopathic pulmonary fibrosis and interstitial lung disease associated with autoimmune diseases. Int J Mol Sci 2023; 24 (02) 1275
- 125 Shahar I, Fireman E, Topilsky M. et al. Effect of endothelin-1 on alpha-smooth muscle actin expression and on alveolar fibroblasts proliferation in interstitial lung diseases. Int J Immunopharmacol 1999; 21 (11) 759-775
- 126 Cambrey AD, Harrison NK, Dawes KE. et al. Increased levels of endothelin-1 in bronchoalveolar lavage fluid from patients with systemic sclerosis contribute to fibroblast mitogenic activity in vitro. Am J Respir Cell Mol Biol 1994; 11 (04) 439-445
- 127 Dawes KE, Cambrey AD, Campa JS. et al. Changes in collagen metabolism in response to endothelin-1: evidence for fibroblast heterogeneity. Int J Biochem Cell Biol 1996; 28 (02) 229-238
- 128 Kulasekaran P, Scavone CA, Rogers DS, Arenberg DA, Thannickal VJ, Horowitz JC. Endothelin-1 and transforming growth factor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation. Am J Respir Cell Mol Biol 2009; 41 (04) 484-493
- 129 Hocher B, Schwarz A, Fagan KA. et al. Pulmonary fibrosis and chronic lung inflammation in ET-1 transgenic mice. Am J Respir Cell Mol Biol 2000; 23 (01) 19-26
- 130 Park SH, Saleh D, Giaid A, Michel RP. Increased endothelin-1 in bleomycin-induced pulmonary fibrosis and the effect of an endothelin receptor antagonist. Am J Respir Crit Care Med 1997; 156 (2 Pt 1): 600-608
- 131 Mutsaers SE, Marshall RP, Goldsack NR, Laurent GJ, McAnulty RJ. Effect of endothelin receptor antagonists (BQ-485, Ro 47-0203) on collagen deposition during the development of bleomycin-induced pulmonary fibrosis in rats. Pulm Pharmacol Ther 1998; 11 (2-3): 221-225
- 132 King Jr TE, Behr J, Brown KK. et al. BUILD-1: a randomized placebo-controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2008; 177 (01) 75-81
- 133 King Jr TE, Brown KK, Raghu G. et al. BUILD-3: a randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2011; 184 (01) 92-99
- 134 Raghu G, Behr J, Brown KK. et al; ARTEMIS-IPF Investigators*. Treatment of idiopathic pulmonary fibrosis with ambrisentan: a parallel, randomized trial. Ann Intern Med 2013; 158 (09) 641-649
- 135 Raghu G, Million-Rousseau R, Morganti A, Perchenet L, Behr J, Group MS. MUSIC Study Group. Macitentan for the treatment of idiopathic pulmonary fibrosis: the randomised controlled MUSIC trial. Eur Respir J 2013; 42 (06) 1622-1632
- 136 Cruz-Gervis R, Stecenko AA, Dworski R. et al. Altered prostanoid production by fibroblasts cultured from the lungs of human subjects with idiopathic pulmonary fibrosis. Respir Res 2002; 3 (01) 17
- 137 Suzuki T, Kropski JA, Chen J. et al. Thromboxane-prostanoid receptor signaling drives persistent fibroblast activation in pulmonary fibrosis. Am J Respir Crit Care Med 2022; 206 (05) 596-607
- 138 Perrakis A, Moolenaar WH. Autotaxin: structure-function and signaling. J Lipid Res 2014; 55 (06) 1010-1018
- 139 Yung YC, Stoddard NC, Chun J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res 2014; 55 (07) 1192-1214
- 140 Salgado-Polo F, Borza R, Matsoukas MT. et al. Autotaxin facilitates selective LPA receptor signaling. Cell Chem Biol 2023; 30 (01) 69-84.e14
- 141 Ninou I, Magkrioti C, Aidinis V. Autotaxin in pathophysiology and pulmonary fibrosis. Front Med (Lausanne) 2018; 5: 180
- 142 Funke M, Zhao Z, Xu Y, Chun J, Tager AM. The lysophosphatidic acid receptor LPA1 promotes epithelial cell apoptosis after lung injury. Am J Respir Cell Mol Biol 2012; 46 (03) 355-364
- 143 Xu MY, Porte J, Knox AJ. et al. Lysophosphatidic acid induces alphavbeta6 integrin-mediated TGF-beta activation via the LPA2 receptor and the small G protein G alpha(q). Am J Pathol 2009; 174 (04) 1264-1279
- 144 Tager AM, LaCamera P, Shea BS. et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med 2008; 14 (01) 45-54
- 145 Sakai N, Chun J, Duffield JS. et al. Lysophosphatidic acid signaling through its receptor initiates profibrotic epithelial cell fibroblast communication mediated by epithelial cell derived connective tissue growth factor. Kidney Int 2017; 91 (03) 628-641
- 146 Luo YL, Li Y, Zhou W, Wang SY, Liu YQ. Inhibition of LPA-LPAR1 and VEGF-VEGFR2 signaling in IPF treatment. Drug Des Devel Ther 2023; 17: 2679-2690
- 147 Oikonomou N, Mouratis MA, Tzouvelekis A. et al. Pulmonary autotaxin expression contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Cell Mol Biol 2012; 47 (05) 566-574
- 148 Neighbors M, Li Q, Zhu SJ. et al. Bioactive lipid lysophosphatidic acid species are associated with disease progression in idiopathic pulmonary fibrosis. J Lipid Res 2023; 64 (06) 100375
- 149 Desroy N, Housseman C, Bock X. et al. Discovery of 2-[[2-Ethyl-6-[4-[2-(3-hydroxyazetidin-1-yl)-2-oxoethyl]piperazin-1-yl]-8-methylimidazo[1,2-a]pyridin-3-yl]methylamino]-4-(4-fluorophenyl)thiazole-5-carbonitrile (GLPG1690), a first-in-class autotaxin inhibitor undergoing clinical evaluation for the treatment of idiopathic pulmonary fibrosis. J Med Chem 2017; 60 (09) 3580-3590
- 150 Swaney JS, Chapman C, Correa LD. et al. A novel, orally active LPA(1) receptor antagonist inhibits lung fibrosis in the mouse bleomycin model. Br J Pharmacol 2010; 160 (07) 1699-1713
- 151 Gan L, Xue JX, Li X. et al. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation. Biochem Biophys Res Commun 2011; 409 (01) 7-13
- 152 Maher TM, van der Aar EM, Van de Steen O. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of GLPG1690, a novel autotaxin inhibitor, to treat idiopathic pulmonary fibrosis (FLORA): a phase 2a randomised placebo-controlled trial. Lancet Respir Med 2018; 6 (08) 627-635
- 153 Maher TM, Ford P, Brown KK. et al; ISABELA 1 and 2 Investigators. Ziritaxestat, a novel autotaxin inhibitor, and lung function in idiopathic pulmonary fibrosis: the ISABELA 1 and 2 randomized clinical trials. JAMA 2023; 329 (18) 1567-1578
- 154 Taneja A, Jentsch G, Delage S. et al. ISABELA studies: plasma exposure and target engagement do not explain the lack of efficacy of ziritaxestat in patients with idiopathic pulmonary fibrosis. Clin Pharmacol Ther 2024; 115 (03) 606-615
- 155 Palmer SM, Snyder L, Todd JL. et al. Randomized, double-blind, placebo-controlled, phase 2 trial of BMS-986020, a lysophosphatidic acid receptor antagonist for the treatment of idiopathic pulmonary fibrosis. Chest 2018; 154 (05) 1061-1069
- 156 Corte TJ, Behr J, Cottin V. et al. Efficacy and safety of admilparant, an LPA1 antagonist, in pulmonary fibrosis: a phase 2 randomized clinical trial. Am J Respir Crit Care Med 2025; 211 (02) 230-238
- 157 Freeberg MAT, Perelas A, Rebman JK, Phipps RP, Thatcher TH, Sime PJ. Mechanical feed-forward loops contribute to idiopathic pulmonary fibrosis. Am J Pathol 2021; 191 (01) 18-25
- 158 Slack RJ, Macdonald SJF, Roper JA, Jenkins RG, Hatley RJD. Emerging therapeutic opportunities for integrin inhibitors. Nat Rev Drug Discov 2022; 21 (01) 60-78
- 159 Lawton JS, Tamis-Holland JE, Bangalore S. et al; Writing Committee Members. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. J Am Coll Cardiol 2022; 79 (02) 197-215
- 160 Polman CH, O'Connor PW, Havrdova E. et al; AFFIRM Investigators. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2006; 354 (09) 899-910
- 161 Munger JS, Huang X, Kawakatsu H. et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999; 96 (03) 319-328
- 162 Reed NI, Jo H, Chen C. et al. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Sci Transl Med 2015; 7 (288) 288ra79
- 163 Shi M, Zhu J, Wang R. et al. Latent TGF-β structure and activation. Nature 2011; 474 (7351): 343-349
- 164 Horan GS, Wood S, Ona V. et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am J Respir Crit Care Med 2008; 177 (01) 56-65
- 165 Saini G, Porte J, Weinreb PH. et al. αvβ6 integrin may be a potential prognostic biomarker in interstitial lung disease. Eur Respir J 2015; 46 (02) 486-494
- 166 John AE, Graves RH, Pun KT. et al. Translational pharmacology of an inhaled small molecule αvβ6 integrin inhibitor for idiopathic pulmonary fibrosis. Nat Commun 2020; 11 (01) 4659
- 167 Raghu G, Mouded M, Chambers DC. et al. A phase IIb randomized clinical study of an anti-αvβ6 monoclonal antibody in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2022; 206 (09) 1128-1139
- 168 Lancaster L, Cottin V, Ramaswamy M. et al; PLN-74809-IPF-202 Trial Investigators. Bexotegrast in patients with idiopathic pulmonary fibrosis: the INTEGRIS-IPF clinical trial. Am J Respir Crit Care Med 2024; 210 (04) 424-434
- 169 Pliant Therapeutics Provides Update on BEACON-IPF, a Phase 2b/3 Trial in Patients with Idiopathic Pulmonary Fibrosis. 02/07/2025, 2025. Accessed March 26, 2025 at: https://ir.pliantrx.com/news-releases/news-release-details/pliant-therapeutics-provides-update-beacon-ipf-phase-2b3-trial
- 170 Staab-Weijnitz CA. Fighting the fiber: targeting collagen in lung fibrosis. Am J Respir Cell Mol Biol 2022; 66 (04) 363-381
- 171 Yoon I, Kim S, Cho M. et al. Control of fibrosis with enhanced safety via asymmetric inhibition of prolyl-tRNA synthetase 1. EMBO Mol Med 2023; 15 (07) e16940
- 172 Sakamoto N, Okuno D, Tokito T. et al. HSP47: a therapeutic target in pulmonary fibrosis. Biomedicines 2023; 11 (09) 2387
- 173 Barry-Hamilton V, Spangler R, Marshall D. et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 2010; 16 (09) 1009-1017
- 174 Raghu G, Brown KK, Collard HR. et al. Efficacy of simtuzumab versus placebo in patients with idiopathic pulmonary fibrosis: a randomised, double-blind, controlled, phase 2 trial. Lancet Respir Med 2017; 5 (01) 22-32
- 175 Sanders YY, Liu G. Transglutaminase-2: nature's glue in lung fibrosis?. Am J Respir Cell Mol Biol 2021; 65 (03) 243-244
- 176 Schafer MJ, White TA, Iijima K. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 2017; 8: 14532
- 177 Lagares D, Santos A, Grasberger PE. et al. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci Transl Med 2017; 9 (420) eaal3765
- 178 Pan J, Li D, Xu Y. et al. Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent type ii pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. Int J Radiat Oncol Biol Phys 2017; 99 (02) 353-361
- 179 Kim SH, Lee JY, Yoon CM. et al. Mitochondrial antiviral signaling protein is crucial for the development of pulmonary fibrosis. Eur Respir J 2021; 57 (04) 2000652
- 180 Gu L, Surolia R, Larson-Casey JL. et al. Targeting Cpt1a-Bcl-2 interaction modulates apoptosis resistance and fibrotic remodeling. Cell Death Differ 2022; 29 (01) 118-132
- 181 He Y, Li F, Zhang C. et al. Therapeutic effects of the Bcl-2 inhibitor on bleomycin-induced pulmonary fibrosis in mice. Front Mol Biosci 2021; 8: 645846
- 182 Cooley JC, Javkhlan N, Wilson JA. et al. Inhibition of antiapoptotic BCL-2 proteins with ABT-263 induces fibroblast apoptosis, reversing persistent pulmonary fibrosis. JCI Insight 2023; 8 (03) e163762
- 183 Nambiar A, Kellogg III D, Justice J. et al. Senolytics dasatinib and quercetin in idiopathic pulmonary fibrosis: results of a phase I, single-blind, single-center, randomized, placebo-controlled pilot trial on feasibility and tolerability. EBioMedicine 2023; 90: 104481
- 184 Jobling MF, Mott JD, Finnegan MT. et al. Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res 2006; 166 (06) 839-848
- 185 Pociask DA, Sime PJ, Brody AR. Asbestos-derived reactive oxygen species activate TGF-beta1. Lab Invest 2004; 84 (08) 1013-1023
- 186 Thannickal VJ, Fanburg BL. Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1. J Biol Chem 1995; 270 (51) 30334-30338
- 187 Hecker L, Vittal R, Jones T. et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 2009; 15 (09) 1077-1081
- 188 Thannickal VJ, Jandeleit-Dahm K, Szyndralewiez C, Török NJ. Pre- evidence of a dual NADPH oxidase 1/4 inhibitor (setanaxib) in liver, kidney and lung fibrosis. J Cell Mol Med 2023; 27 (04) 471-481
- 189 Huang LS, Jiang P, Feghali-Bostwick C, Reddy SP, Garcia JGN, Natarajan V. Lysocardiolipin acyltransferase regulates TGF-β mediated lung fibroblast differentiation. Free Radic Biol Med 2017; 112: 162-173
- 190 Hecker L, Logsdon NJ, Kurundkar D. et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med 2014; 6 (231) 231ra47
- 191 Nogee LM, Dunbar III AE, Wert SE, Askin F, Hamvas A, Whitsett JA. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N Engl J Med 2001; 344 (08) 573-579
- 192 Wang WJ, Mulugeta S, Russo SJ, Beers MF. Deletion of exon 4 from human surfactant protein C results in aggresome formation and generation of a dominant negative. J Cell Sci 2003; 116 (Pt 4): 683-692
- 193 Mulugeta S, Nguyen V, Russo SJ, Muniswamy M, Beers MF. A surfactant protein C precursor protein BRICHOS domain mutation causes endoplasmic reticulum stress, proteasome dysfunction, and caspase 3 activation. Am J Respir Cell Mol Biol 2005; 32 (06) 521-530
- 194 Thurm T, Kaltenborn E, Kern S, Griese M, Zarbock R. SFTPC mutations cause SP-C degradation and aggregate formation without increasing ER stress. Eur J Clin Invest 2013; 43 (08) 791-800
- 195 Maguire JA, Mulugeta S, Beers MF. Endoplasmic reticulum stress induced by surfactant protein C BRICHOS mutants promotes proinflammatory signaling by epithelial cells. Am J Respir Cell Mol Biol 2011; 44 (03) 404-414
- 196 Nguyen H, Uhal BD. The unfolded protein response controls ER stress-induced apoptosis of lung epithelial cells through angiotensin generation. Am J Physiol Lung Cell Mol Physiol 2016; 311 (05) L846-L854
- 197 Delbrel E, Soumare A, Naguez A. et al. HIF-1α triggers ER stress and CHOP-mediated apoptosis in alveolar epithelial cells, a key event in pulmonary fibrosis. Sci Rep 2018; 8 (01) 17939
- 198 Baek HA, Kim DS, Park HS. et al. Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts. Am J Respir Cell Mol Biol 2012; 46 (06) 731-739
- 199 Siwecka N, Rozpędek-Kamińska W, Wawrzynkiewicz A, Pytel D, Diehl JA, Majsterek I. The structure, activation and signaling of IRE1 and its role in determining cell fate. Biomedicines 2021; 9 (02) 156
- 200 Auyeung VC, Downey MS, Thamsen M. et al. IRE1α drives lung epithelial progenitor dysfunction to establish a niche for pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2022; 322 (04) L564-L580
- 201 Katzen J, Rodriguez L, Tomer Y. et al. Disruption of proteostasis causes IRE1 mediated reprogramming of alveolar epithelial cells. Proc Natl Acad Sci U S A 2022; 119 (43) e2123187119
- 202 Srour N, Thébaud B. Mesenchymal stromal cells in animal bleomycin pulmonary fibrosis models: a systematic review. Stem Cells Transl Med 2015; 4 (12) 1500-1510
- 203 Li DY, Li RF, Sun DX, Pu DD, Zhang YH. Mesenchymal stem cell therapy in pulmonary fibrosis: a meta-analysis of preclinical studies. Stem Cell Res Ther 2021; 12 (01) 461
- 204 Ortiz LA, Dutreil M, Fattman C. et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 2007; 104 (26) 11002-11007
- 205 Germano D, Blyszczuk P, Valaperti A. et al. Prominin-1/CD133+ lung epithelial progenitors protect from bleomycin-induced pulmonary fibrosis. Am J Respir Crit Care Med 2009; 179 (10) 939-949
- 206 Garcia O, Carraro G, Turcatel G. et al. Amniotic fluid stem cells inhibit the progression of bleomycin-induced pulmonary fibrosis via CCL2 modulation in bronchoalveolar lavage. PLoS One 2013; 8 (08) e71679
- 207 Min F, Gao F, Li Q, Liu Z. Therapeutic effect of human umbilical cord mesenchymal stem cells modified by angiotensin-converting enzyme 2 gene on bleomycin-induced lung fibrosis injury. Mol Med Rep 2015; 11 (04) 2387-2396
- 208 Choi M, Ban T, Rhim T. Therapeutic use of stem cell transplantation for cell replacement or cytoprotective effect of microvesicle released from mesenchymal stem cell. Mol Cells 2014; 37 (02) 133-139
- 209 Cargnoni A, Gibelli L, Tosini A. et al. Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transplant 2009; 18 (04) 405-422
- 210 Li X, Yue S, Luo Z. Mesenchymal stem cells in idiopathic pulmonary fibrosis. Oncotarget 2017; 8 (60) 102600-102616
- 211 Glassberg MK, Minkiewicz J, Toonkel RL. et al. Allogeneic human mesenchymal stem cells in patients with idiopathic pulmonary fibrosis via intravenous delivery (AETHER): a phase I safety clinical trial. Chest 2017; 151 (05) 971-981
- 212 Averyanov A, Koroleva I, Konoplyannikov M. et al. First-in-human high-cumulative-dose stem cell therapy in idiopathic pulmonary fibrosis with rapid lung function decline. Stem Cells Transl Med 2020; 9 (01) 6-16
- 213 Dinh PC, Cores J, Hensley MT. et al. Derivation of therapeutic lung spheroid cells from minimally invasive transbronchial pulmonary biopsies. Respir Res 2017; 18 (01) 132
- 214 Henry E, Cores J, Hensley MT. et al. Adult lung spheroid cells contain progenitor cells and mediate regeneration in rodents with bleomycin-induced pulmonary fibrosis. Stem Cells Transl Med 2015; 4 (11) 1265-1274
- 215 Hoffmann M, Kleine-Weber H, Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181 (02) 271-280.e8
- 216 Bezzerri V, Gentili V, Api M. et al. SARS-CoV-2 viral entry and replication is impaired in cystic fibrosis airways due to ACE2 downregulation. Nat Commun 2023; 14 (01) 132
- 217 Xu J, Xu X, Jiang L, Dua K, Hansbro PM, Liu G. SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir Res 2020; 21 (01) 182
- 218 Oz M, Lorke DE. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed Pharmacother 2021; 136: 111193
- 219 Wang R, Zagariya A, Ibarra-Sunga O. et al. Angiotensin II induces apoptosis in human and rat alveolar epithelial cells. Am J Physiol 1999; 276 (05) L885-L889
- 220 Papp M, Li X, Zhuang J, Wang R, Uhal BD. Angiotensin receptor subtype AT(1) mediates alveolar epithelial cell apoptosis in response to ANG II. Am J Physiol Lung Cell Mol Physiol 2002; 282 (04) L713-L718
- 221 Li X, Molina-Molina M, Abdul-Hafez A, Uhal V, Xaubet A, Uhal BD. Angiotensin converting enzyme-2 is protective but downregulated in human and experimental lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2008; 295 (01) L178-L185
- 222 Li X, Molina-Molina M, Abdul-Hafez A. et al. Extravascular sources of lung angiotensin peptide synthesis in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2006; 291 (05) L887-L895
- 223 Li X, Zhang H, Soledad-Conrad V, Zhuang J, Uhal BD. Bleomycin-induced apoptosis of alveolar epithelial cells requires angiotensin synthesis de novo. Am J Physiol Lung Cell Mol Physiol 2003; 284 (03) L501-L507
- 224 Marshall RP, McAnulty RJ, Laurent GJ. Angiotensin II is mitogenic for human lung fibroblasts via activation of the type 1 receptor. Am J Respir Crit Care Med 2000; 161 (06) 1999-2004
- 225 Wang L, Wang Y, Yang T, Guo Y, Sun T. Angiotensin-converting enzyme 2 attenuates bleomycin-induced lung fibrosis in mice. Cell Physiol Biochem 2015; 36 (02) 697-711
- 226 Rey-Parra GJ, Vadivel A, Coltan L. et al. Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury. J Mol Med (Berl) 2012; 90 (06) 637-647
- 227 Abadir P, Cosarderelioglu C, Damarla M. et al. Unlocking the protective potential of the angiotensin type 2 receptor (AT2R) in acute lung injury and age-related pulmonary dysfunction. Biochem Pharmacol 2024; 220: 115978
- 228 Meng Y, Yu CH, Li W. et al. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway. Am J Respir Cell Mol Biol 2014; 50 (04) 723-736
- 229 Shenoy V, Kwon KC, Rathinasabapathy A. et al. Oral delivery of angiotensin-converting enzyme 2 and angiotensin-(1-7) bioencapsulated in plant cells attenuates pulmonary hypertension. Hypertension 2014; 64 (06) 1248-1259
- 230 Kurisu S, Ozono R, Oshima T. et al. Cardiac angiotensin II type 2 receptor activates the kinin/NO system and inhibits fibrosis. Hypertension 2003; 41 (01) 99-107
- 231 Zheng X, Xu Z, Xu L. et al. Angiotensin II type 2 receptor inhibits M1 polarization and apoptosis of alveolar macrophage and protects against mechanical ventilation-induced lung injury. Inflammation 2025; 48 (01) 165-180
- 232 Rathinasabapathy A, Horowitz A, Horton K. et al. The selective angiotensin II type 2 receptor agonist, compound 21, attenuates the progression of lung fibrosis and pulmonary hypertension in an experimental model of bleomycin-induced lung injury. Front Physiol 2018; 9: 180
- 233 Murray LA, Rosada R, Moreira AP. et al. Serum amyloid P therapeutically attenuates murine bleomycin-induced pulmonary fibrosis via its effects on macrophages. PLoS One 2010; 5 (03) e9683
- 234 Pilling D, Roife D, Wang M. et al. Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J Immunol 2007; 179 (06) 4035-4044
- 235 Murray LA, Chen Q, Kramer MS. et al. TGF-beta driven lung fibrosis is macrophage dependent and blocked by serum amyloid P. Int J Biochem Cell Biol 2011; 43 (01) 154-162
- 236 Pilling D, Gomer RH. Persistent lung inflammation and fibrosis in serum amyloid P component (APCs-/-) knockout mice. PLoS One 2014; 9 (04) e93730
- 237 Raghu G, van den Blink B, Hamblin MJ. et al. Effect of recombinant human pentraxin 2 vs placebo on change in forced vital capacity in patients with idiopathic pulmonary fibrosis: a randomized clinical trial. JAMA 2018; 319 (22) 2299-2307
- 238 Richeldi L, Schiffman C, Behr J. et al. Zinpentraxin alfa for idiopathic pulmonary fibrosis: the randomized phase III STARSCAPE trial. Am J Respir Crit Care Med 2024; 209 (09) 1132-1140
- 239 Montesi SB, Gomez CR, Beers M. et al. Pulmonary fibrosis stakeholder summit: a joint NHLBI, three lakes foundation, and pulmonary fibrosis foundation workshop report. Am J Respir Crit Care Med 2024; 209 (04) 362-373
- 240 Laurila HP, Rajamäki MM. Update on canine idiopathic pulmonary fibrosis in West Highland White Terriers. Vet Clin North Am Small Anim Pract 2020; 50 (02) 431-446
- 241 Khan FA, Stewart I, Moss S. et al. Three-month FVC change: a trial endpoint for idiopathic pulmonary fibrosis based on individual participant data meta-analysis. Am J Respir Crit Care Med 2022; 205 (08) 936-948
- 242 Insilico Medicine announces positive topline results of ISM001–055 for the treatment of idiopathic pulmonary fibrosis (IPF) developed using generative AI. 11/12/2024, 2024. Accessed March 26, 2025 at: https://insilico.com/news/tnik-ipf-phase2a
- 243 Oldham JM, Ma SF, Martinez FJ. et al; IPFnet Investigators. TOLLIP, MUC5B, and the response to N-acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2015; 192 (12) 1475-1482