Subscribe to RSS

DOI: 10.1055/a-2646-1097
Recent Advances in Novel Modulators for Cardiac Myosin Disorders
Funding This work was supported by the National Science and Technology Major Project (Grant No. 2018ZX09711002-002-009), the National Natural Science Foundation of China (Grant No. 81703358), and the Science and Technology Commission of Shanghai Municipality (Grant Nos. 17431903900, 18QB1404200, 21S11908000, 22ZR1460300, 23DZ2292600).

Abstract
In advanced stages of heart disease, most cases are characterized by heart failure, where the heart's systolic and diastolic functions are weakened, and then it cannot meet the body's normal oxygen demands. The contraction of the heart, at the molecular level, involves the interaction between thick filaments (primarily composed of myosin) and thin filaments (primarily composed of actin), where adenosine triphosphate is used as an energy source to generate contraction force. In view of this, cardiac myosin may be a crucial target for the regulation of heart-related diseases. In 2022, mavacamten was approved by the Food and Drug Administration as a first-in-class myosin modulator for the treatment of obstructive hypertrophic cardiomyopathy. At the same time, there is continuing evidence that indicates cardiac myosin modulators as potential agents for the treatment of a variety of cardiac conditions. This review summarizes the current discovery, design, and indication of cardiac myosin modulators to provide valuable insights for further drug development in related fields.
Publication History
Received: 05 November 2024
Accepted: 30 June 2025
Article published online:
18 August 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322 (02) H181-H233
- 2 Ciarambino T, Menna G, Sansone G, Giordano M. Cardiomyopathies: An Overview. Int J Mol Sci 2021; 22 (14) 7722
- 3 Gautel M, Djinović-Carugo K. The sarcomeric cytoskeleton: from molecules to motion. J Exp Biol 2016; 219 (Pt 2): 135-145
- 4 Henderson CA, Gomez CG, Novak SM, Mi-Mi L, Gregorio CC. Overview of the muscle cytoskeleton. Compr Physiol 2017; 7 (03) 891-944
- 5 Pettinato AM, Ladha FA, Hinson JT. The cardiac sarcomere and cell cycle. Curr Cardiol Rep 2022; 24 (06) 623-630
- 6 World Health Organization. World health statistics 2023: Monitoring health for the SDGs, Sustainable Development Goals. Geneva: World Health Organization; 2023 . License: CC BY-NC-SA 3.0 IGO. Available November 4, 2024 at: https://www.who.int/publications/i/item/9789240074323
- 7 Virani SS, Alonso A, Benjamin EJ. et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation 2020; 141 (09) e139-e596
- 8 Shah SJ, Borlaug BA, Kitzman DW. et al. Research priorities for heart failure with preserved ejection fraction: National Heart, Lung, and Blood Institute working group summary. Circulation 2020; 141 (12) 1001-1026
- 9 Teerlink JR, Felker GM, McMurray JJ. et al; COSMIC-HF Investigators. Chronic oral study of myosin activation to increase contractility in heart failure (COSMIC-HF): a phase 2, pharmacokinetic, randomised, placebo-controlled trial. Lancet 2016; 388 (10062): 2895-2903
- 10 Spertus JA, Fine JT, Elliott P. et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): health status analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2021; 397 (10293): 2467-2475
- 11 Braunwald E, Saberi S, Abraham TP, Elliott PM, Olivotto I. Mavacamten: a first-in-class myosin inhibitor for obstructive hypertrophic cardiomyopathy. Eur Heart J 2023; 44 (44) 4622-4633
- 12 Ostrominski JW, Guo R, Elliott PM, Ho CY. Cardiac myosin inhibitors for managing obstructive hypertrophic cardiomyopathy: JACC: Heart failure state-of-the-art review. JACC Heart Fail 2023; 11 (07) 735-748
- 13 Teerlink JR. A novel approach to improve cardiac performance: cardiac myosin activators. Heart Fail Rev 2009; 14 (04) 289-298
- 14 Kogut J, Popjes ED. Hypertrophic Cardiomyopathy 2020. Curr Cardiol Rep 2020; 22 (11) 154
- 15 Wilson WS, Criley JM, Ross RS. Dynamics of left ventricular emptying in hypertrophic subaortic stenosis. A cineangiographic and hemodynamic study. Am Heart J 1967; 73 (01) 4-16
- 16 Green EM, Wakimoto H, Anderson RL. et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science 2016; 351 (6273) 617-621
- 17 Stewart S, Mason DT, Braunwald E. Impaired rate of left ventricular filling in idiopathic hypertrophic subaortic stenosis and valvular aortic stenosis. Circulation 1968; 37 (01) 8-14
- 18 Alfares AA, Kelly MA, McDermott G. et al. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med 2015; 17 (11) 880-888
- 19 Bos JM, Will ML, Gersh BJ, Kruisselbrink TM, Ommen SR, Ackerman MJ. Characterization of a phenotype-based genetic test prediction score for unrelated patients with hypertrophic cardiomyopathy. Mayo Clin Proc 2014; 89 (06) 727-737
- 20 Lehman SJ, Crocini C, Leinwand LA. Targeting the sarcomere in inherited cardiomyopathies. Nat Rev Cardiol 2022; 19 (06) 353-363
- 21 Moore JR, Leinwand L, Warshaw DMJCr. Invited Review: The myosins: exploration of the development of our current understanding of these mutations in the motor. Circ Res 2012; 111 (03) 375
- 22 Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 2017; 121 (07) 749-770
- 23 Ommen SR, Mital S, Burke MA. et al. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2020; 76 (25) e159-e240
- 24 Olivotto I, Hellawell JL, Farzaneh-Far R. et al. Novel approach targeting the complex pathophysiology of hypertrophic cardiomyopathy: The impact of late sodium current inhibition on exercise capacity in subjects with symptomatic hypertrophic cardiomyopathy (LIBERTY-HCM) trial. Circ Heart Fail 2016; 9 (03) e002764
- 25 Spronk HM, De Jong AM, Verheule S. et al. Hypercoagulability causes atrial fibrosis and promotes atrial fibrillation. Eur Heart J 2017; 38 (01) 38-50
- 26 Gao JM, Guo H, Zhang YH. et al. Effects of Qilong Capsules on myocardial fibrosis and insufficient blood circulation in ischemic cardiomyopathy with Qi deficiency and blood stasis [in Chinese]. Zhongguo Zhongyao Zazhi 2022; 47 (05) 1327-1335
- 27 Nag S, Sommese RF, Ujfalusi Z. et al. Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function. Sci Adv 2015; 1 (09) e1500511
- 28 Keam SJ. Mavacamten: First Approval. Drugs 2022; 82 (10) 1127-1135
- 29 Oslob J, Anderson R, Aubele D. et al. Pyrimidinedione compounds against cardiac conditions. WO 2014/205223 A1. December 24, 2014
- 30 Auguin D, Robert-Paganin J, Réty S. et al. Omecamtiv mecarbil and Mavacamten target the same myosin pocket despite antagonistic effects in heart contraction. BioRxiv . Preprint. November 15, 2023.
- 31 Carlson T, Del Rio CL, Edelberg JM. et al. Methods of treatment with myosin modulator. WO 2021/092598 Al. May 14, 2021
- 32 Chu S, Muretta JM, Thomas DD. Direct detection of the myosin super-relaxed state and interacting-heads motif in solution. J Biol Chem 2021; 297 (04) 101157
- 33 Gollapudi SK, Ma W, Chakravarthy S. et al. Two classes of myosin inhibitors, para-nitroblebbistatin and mavacamten, stabilize β-cardiac myosin in different structural and functional states. J Mol Biol 2021; 433 (23) 167295
- 34 Magnusson P, Karason K. Mavacamten - the first disease-specific pharmacological treatment of hypertrophic cardiomyopathy [in Swedish]. Lakartidningen 2021; 118: 21054-21054
- 35 Chen YJ, Chien CS, Chiang CE, Chen CH, Cheng HM. From genetic mutations to the molecular basis of heart failure treatment: an overview of the mechanism and implication of the novel modulators for cardiac myosin. Int J Mol Sci 2021; 22 (12) 6617
- 36 Kraigher-Krainer E, Shah AM, Gupta DK. et al; PARAMOUNT Investigators. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol 2014; 63 (05) 447-456
- 37 Norman HS, Oujiri J, Larue SJ, Chapman CB, Margulies KB, Sweitzer NK. Decreased cardiac functional reserve in heart failure with preserved systolic function. J Card Fail 2011; 17 (04) 301-308
- 38 Shah SJ, Rigolli M, Javidialsaadi A. et al. Cardiac myosin inhibition in heart failure with normal and supranormal ejection fraction: primary results of the EMBARK-HFpEF trial. JAMA Cardiol 2025; 10 (02) 170-175
- 39 Heitner SB, Jacoby D, Lester SJ. et al. Mavacamten treatment for obstructive hypertrophic cardiomyopathy: A clinical trial. Ann Intern Med 2019; 170 (11) 741-748
- 40 Grillo MP, Erve JCL, Dick R. et al. In vitro and in vivo pharmacokinetic characterization of mavacamten, a first-in-class small molecule allosteric modulator of beta cardiac myosin. Xenobiotica 2019; 49 (06) 718-733
- 41 Chuang C, Morgan B, Vanderwal M. et al. Dihydrobenzofuran and inden analogs as cardiac sarcomere inhibitors. WO 2019/144041 A1. July 25, 2019
- 42 Chuang C, Collibee S, Ashcraft L. et al. Discovery of aficamten (CK-274), a next-generation cardiac myosin inhibitor for the treatment of hypertrophic cardiomyopathy. J Med Chem 2021; 64 (19) 14142-14152
- 43 Maron MS, Masri A, Choudhury L. et al; REDWOOD-HCM Steering Committee and Investigators. Phase 2 study of Aficamten in patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol 2023; 81 (01) 34-45
- 44 Masri A, Olivotto I. Cardiac myosin inhibitors as a novel treatment option for obstructive hypertrophic cardiomyopathy: addressing the core of the matter. J Am Heart Assoc 2022; 11 (09) e024656
- 45 Owens AT, Masri A, Abraham TP. et al; REDWOOD-HCM INVESTIGATORS. Aficamten for drug-refractory severe obstructive hypertrophic cardiomyopathy in patients receiving disopyramide: REDWOOD-HCM cohort 3. J Card Fail 2023; 29 (11) 1576-1582
- 46 Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol 2011; 8 (01) 30-41
- 47 Murphy SP, Ibrahim NE, Januzzi Jr JL. Heart failure with reduced ejection fraction: a review. JAMA 2020; 324 (05) 488-504
- 48 Packer M. The search for the ideal positive inotropic agent. N Engl J Med 1993; 329 (03) 201-202
- 49 Xiong K, Qiao BJ, Liang LY, Shou YL. New progress in the treatment of heart failure with positive inotropic drugs. Advances in Clinical Medicine 2022; 12: 6569
- 50 Jia X, Cheng G, Zhang J, Zhao L. Application progress of positive inotropic drugs in patients with heart failure. Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease 2021; 29 (10) 129-132
- 51 Nagy L, Pollesello P, Papp Z. Inotropes and inodilators for acute heart failure: sarcomere active drugs in focus. J Cardiovasc Pharmacol 2014; 64 (03) 199-208
- 52 Planelles-Herrero VJ, Hartman JJ, Robert-Paganin J, Malik FI, Houdusse A. Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil. Nat Commun 2017; 8 (01) 190
- 53 Swenson AM, Tang W, Blair CA. et al. Omecamtiv mecarbil enhances the duty ratio of human β-cardiac myosin resulting in increased calcium sensitivity and slowed force development in cardiac muscle. J Biol Chem 2017; 292 (09) 3768-3778
- 54 Day SM, Tardiff JC, Ostap EM. Myosin modulators: emerging approaches for the treatment of cardiomyopathies and heart failure. J Clin Invest 2022; 132 (05) e148557
- 55 Nagy L, Kovács Á, Bódi B. et al. The novel cardiac myosin activator omecamtiv mecarbil increases the calcium sensitivity of force production in isolated cardiomyocytes and skeletal muscle fibres of the rat. Br J Pharmacol 2015; 172 (18) 4506-4518
- 56 Woody MS, Greenberg MJ, Barua B, Winkelmann DA, Goldman YE, Ostap EM. Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke. Nat Commun 2018; 9 (01) 3838
- 57 Morgan BP, Muci A, Lu PP. et al. Discovery of omecamtiv mecarbil the first, selective, small molecule activator of cardiac Myosin. ACS Med Chem Lett 2010; 1 (09) 472-477
- 58 Teerlink JR, Diaz R, Felker GM. et al; GALACTIC-HF Investigators. Cardiac myosin activation with Omecamtiv mecarbil in systolic heart failure. N Engl J Med 2021; 384 (02) 105-116
- 59 Alqatati F, Elbahnasawy M, Bugazia S. et al. Safety and efficacy of omecamtiv mecarbil for heart failure: A systematic review and meta-analysis. Indian Heart J 2022; 74 (03) 155-162
- 60 Morgan BP. Compounds, compositions and methods. U.S. Patent 2006/0014761 A1. Jan 19, 2006
- 61 Caille S, Quasdorf K, Roosen P. et al. Synthesis of omecamtiv mecarbil. WO Patent 2019/006231 A1. January 3, 2019
- 62 Teerlink JR, Clarke CP, Saikali KG. et al. Dose-dependent augmentation of cardiac systolic function with the selective cardiac myosin activator, omecamtiv mecarbil: a first-in-man study. Lancet 2011; 378 (9792) 667-675
- 63 Bernier TD, Buckley LFJ. Cardiac myosin activation for the treatment of systolic heart failure. J Cardiovasc Pharmacol 2021; 77 (01) 4-10
- 64 Felker GM, Solomon SD, Claggett B. et al. Assessment of Omecamtiv mecarbil for the treatment of patients with severe heart failure: a post hoc analysis of data from the GALACTIC-HF randomized clinical trial. JAMA Cardiol 2022; 7 (01) 26-34
- 65 Bell K, Anto A, Anderson R. et al. Cardiac muscle activation; the role of length-dependent activation and the novel myosin activator danicamtiv. Eur Heart J 2020; 41 (Supplement_2): ehaa946. 3681
- 66 Voors AA, Tamby JF, Cleland JG. et al. Effects of danicamtiv, a novel cardiac myosin activator, in heart failure with reduced ejection fraction: experimental data and clinical results from a phase 2a trial. Eur J Heart Fail 2020; 22 (09) 1649-1658
- 67 Shen S, Sewanan LR, Jacoby DL, Campbell SG. Danicamtiv enhances systolic function and frank-starling behavior at a minimal diastolic cost in engineered human myocardium. J Am Heart Assoc 2021; 10 (12) e020860
- 68 Oslob J, Aubele D, Kim J. et al. 4-methylsulfonyl-substituted piperidine urea compounds for the treatment of dilated cardiomyopathy (DCM). WO Patent 2016/118774 A1. July 28, 2016
- 69 Scott B, Greenberg L, Squarci C, Campbell KS, Greenberg MJ. Danicamtiv reduces myosin's working stroke but enhances contraction by activating the thin filament. bioRxiv . Preprint. 2024; October 31, 2024.
- 70 Holmes JB, Stelzer JE. Comparative mechanistic analysis of danicamtiv and omecamtiv mecarbil's in vivo cardiac effects. J Gen Physiol 2025; 157 (04) e202513762