Subscribe to RSS
DOI: 10.1055/a-2625-4769
Definition und Klassifikation der pulmonalen Hypertonie
Definition and Classification of Pulmonary HypertensionAuthors

Zusammenfassung
Die pulmonale Hypertonie (PH) stellt einen hämodynamisch definierten pathologischen Zustand dar, welcher durch einen mittleren pulmonalarteriellen Druck (mPAP) > 20 mmHg charakterisiert ist. Die differenzialdiagnostische Zuordnung erfolgt anhand des pulmonalarteriellen Wedge-Drucks (PAWP) und des pulmonalen Gefäßwiderstands (PVR): präkapilläre PH: PAWP ≤ 15 mmHg bei gleichzeitig erhöhtem PVR > 2 Wood Units (WU), isolierte postkapilläre PH: PAWP > 15 mmHg, PVR ≤ 2 WU und kombinierte post- und präkapilläre PH: PAWP > 15 mmHg und PVR > 2 WU.
Die belastungsinduzierte PH ist definiert als normwertiger mPAP in Ruhe, jedoch pathologischer Drucksteigerung unter körperlicher Belastung, definiert durch eine Steigung des mPAP relativ zum Herzzeitvolumen (HZV) von > 3 mmHg/L/min.
Die etablierte klinische Klassifikation der PH bleibt in ihrer Grundstruktur mit 5 Hauptgruppen erhalten. Modifikationen beinhalten: Re-Etablierung der Subgruppe der Langzeitresponder auf Kalziumkanalblocker innerhalb der idiopathischen pulmonalarteriellen Hypertonie (IPAH), Erweiterung der Gruppe 2 durch zusätzliche Subkategorien bei PH infolge Linksherzerkrankungen und verfeinerte Untergliederung der Gruppe 3 auf Basis spezifischer pulmonaler Grunderkrankungen statt rein funktioneller Einschränkungen. Die Wirkstoffe Mitomycin-C und Carfilzomib wurden neu in die Liste der Pharmaka mit gesicherter Assoziation zur Entwicklung einer PAH aufgenommen.
Abstract
Pulmonary Hypertension (PH) is characterized as a hemodynamic disorder defined by a mean pulmonary arterial pressure (mPAP) exceeding 20 mmHg at rest. Classification into distinct subtypes is guided by measurements of pulmonary arterial wedge pressure (PAWP) and pulmonary vascular resistance (PVR): Precapillary PH: PAWP ≤ 15 mmHg accompanied by PVR > 2 Wood Units (WU), isolated Postcapillary PH: PAWP > 15 mmHg with PVR ≤ 2 WU and combined Pre- and Postcapillary PH: PAWP > 15 mmHg with PVR > 2 WU.
Exercise-Induced PH refers to a pathophysiological condition in which resting mPAP is within normal limits but exhibits an exaggerated rise during physical exertion. This is quantified by a slope of mPAP relative to cardiac output exceeding 3 mmHg per liter per minute between rest and activity.
The foundational framework for the clinical classification of PH, comprising five principal groups, remains unchanged. Nevertheless, several updates have been introduced: Reintegration of long-term responders to calcium channel blockers as a distinct subset within idiopathic pulmonary arterial hypertension (IPAH), Inclusion of new subcategories under Group 2 PH, which encompasses PH associated with left heart disease and Revision of Group 3 PH to categorize patients based on underlying pulmonary pathology rather than solely functional impairment.
Additionally, Mitomycin-C and Carfilzomib have been recognized as pharmacologic agents with a confirmed causal relationship to the development of pulmonary arterial hypertension (PAH) and have thus been added to the list of definitively associated drugs.
Publication History
Article published online:
06 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Humbert M, Kovacs G, Hoeper MM. et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 2022; 43: 3618-3731
- 2 Humbert M, Kovacs G, Hoeper MM. et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 2022; 2200879
- 3 Kovacs G, Berghold A, Scheidl S. et al. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 2009; 34: 888-894
- 4 Simonneau G, Montani D, Celermajer DS. et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019; 53: 1801913
- 5 Kovacs G, Olschewski A, Berghold A. et al. Pulmonary vascular resistances during exercise in normal subjects: a systematic review. Eur Respir J 2012; 39: 319-328
- 6 Maron BA, Hess E, Maddox TM. et al. Association of Borderline Pulmonary Hypertension With Mortality and Hospitalization in a Large Patient Cohort: Insights From the Veterans Affairs Clinical Assessment, Reporting, and Tracking Program. Circulation 2016; 133: 1240-1248
- 7 Douschan P, Kovacs G, Avian A. et al. Mild Elevation of Pulmonary Arterial Pressure as a Predictor of Mortality. Am J Respir Crit Care Med 2018; 197: 509-516
- 8 Maron BA, Brittain EL, Hess E. et al. Pulmonary vascular resistance and clinical outcomes in patients with pulmonary hypertension: a retrospective cohort study. Lancet Respir Med 2020; 8: 873-884
- 9 Karia N, Howard L, Johnson M. et al. Predictors of outcomes in mild pulmonary hypertension according to 2022 ESC/ERS Guidelines: the EVIDENCE-PAH UK study. Eur Heart J 2023; 44: 4678-4691
- 10 Certain MC, Baron A, Turpin M. et al. Outcomes of cirrhotic patients with pre-capillary pulmonary hypertension and pulmonary vascular resistance between 2 and 3 Wood Units. Eur Respir J 2022; 60: 2200107
- 11 Puigrenier S, Giovannelli J, Lamblin N. et al. Mild pulmonary hemodynamic alterations in patients with systemic sclerosis: relevance of the new 2022 ESC/ERS definition of pulmonary hypertension and impact on mortality. Respir Res 2022; 23: 284
- 12 Pan Z, Marra AM, Benjamin N. et al. Early treatment with ambrisentan of mildly elevated mean pulmonary arterial pressure associated with systemic sclerosis: a randomized, controlled, double-blind, parallel group study (EDITA study). Arthritis Res Ther 2019; 21: 217
- 13 Xanthouli P, Uesbeck P, Lorenz H-M. et al. Effect of ambrisentan in patients with systemic sclerosis and mild pulmonary arterial hypertension: long-term follow-up data from EDITA study. Arthritis Res Ther 2024; 26: 136
- 14 Rayner SG, Tedford RJ, Leary PJ. et al. „This Patient Needs a Doctor, Not a Guideline!“ The Zone of Uncertainty in Pulmonary Arterial Wedge Pressure Measurement. Am J Respir Crit Care Med 2024; 210: 712-714
- 15 Zeder K, Avian A, Mak S. et al. Pulmonary arterial wedge pressure in healthy subjects: a meta-analysis. Eur Respir J 2024; 64: 2400967
- 16 Kovacs G, Moutchia J, Zeder K. et al. Clinical Response to Pulmonary Arterial Hypertension Treatment Does Not Depend on Pulmonary Arterial Wedge Pressure: A Meta-Analysis Using Individual Participant Data from Randomized Clinical Trials. Am J Respir Crit Care Med 2024; 210: 844-847
- 17 Douschan P, Avian A, Foris V. et al. Prognostic Value of Exercise as Compared to Resting Pulmonary Hypertension in Patients with Normal or Mildly Elevated Pulmonary Arterial Pressure. Am J Respir Crit Care Med 2022; 206: 1418-1423
- 18 Zeder K, Banfi C, Steinrisser-Allex G. et al. Diagnostic, prognostic and differential-diagnostic relevance of pulmonary haemodynamic parameters during exercise: a systematic review. Eur Respir J 2022; 60: 2103181
- 19 Kovacs G, Humbert M, Avian A. et al. Prognostic relevance of exercise pulmonary hypertension: results of the multicentre PEX-NET Clinical Research Collaboration. Eur Respir J 2024; 64: 2400698
- 20 Eisman AS, Shah RV, Dhakal BP. et al. Pulmonary Capillary Wedge Pressure Patterns During Exercise Predict Exercise Capacity and Incident Heart Failure. Circ Heart Fail 2018; 11: e004750
- 21 Reddy YNV, Kaye DM, Handoko ML. et al. Diagnosis of Heart Failure With Preserved Ejection Fraction Among Patients With Unexplained Dyspnea. JAMA Cardiol 2022; 7: 891-899
- 22 Müller J, Mayer L, Schneider SR. et al. Pulmonary arterial wedge pressure increase during exercise in patients diagnosed with pulmonary arterial or chronic thromboembolic pulmonary hypertension. ERJ Open Res 2023; 9: 00379-02023
- 23 Emmons-Bell S, Johnson C, Boon-Dooley A. et al. Prevalence, incidence, and survival of pulmonary arterial hypertension: A systematic review for the global burden of disease 2020 study. Pulm Circ 2022; 12: e12020
- 24 Hoeper MM, Humbert M, Souza R. et al. A global view of pulmonary hypertension. Lancet Respir Med 2016; 4: 306-322
- 25 Rosenkranz S, Pausch C, Coghlan JG. et al. Risk stratification and response to therapy in patients with pulmonary arterial hypertension and comorbidities: A COMPERA analysis. J Heart Lung Transplant 2023; 42: 102-114
- 26 Boucly A, Savale L, Jaïs X. et al. Association between Initial Treatment Strategy and Long-Term Survival in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2021; 204: 842-854
- 27 Hoeper MM, Dwivedi K, Pausch C. et al. Phenotyping of idiopathic pulmonary arterial hypertension: a registry analysis. Lancet Respir Med 2022; 10: 937-948
- 28 Hoeper MM, Huscher D, Ghofrani HA. et al. Elderly patients diagnosed with idiopathic pulmonary arterial hypertension: results from the COMPERA registry. Int J Cardiol 2013; 168: 871-880
- 29 Rich S, Kaufmann E, Levy PS. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med 1992; 327: 76-81
- 30 Sitbon O, Humbert M, Jaïs X. et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 2005; 111: 3105-3111
- 31 Montani D, Savale L, Natali D. et al. Long-term response to calcium-channel blockers in non-idiopathic pulmonary arterial hypertension. Eur Heart J 2010; 31: 1898-1907
- 32 Gerhardt F, Fiessler E, Olsson KM. et al. Positive Vasoreactivity Testing in Pulmonary Arterial Hypertension: Therapeutic Consequences, Treatment Patterns, and Outcomes in the Modern Management Era. Circulation 2024; 149: 1549-1564
- 33 Chin KM, Gaine SP, Gerges C. et al. Treatment algorithm for pulmonary arterial hypertension. Eur Respir J 2024; 64: 2401325
- 34 Certain M-C, Chaumais M-C, Jaïs X. et al. Characteristics and Long-term Outcomes of Pulmonary Venoocclusive Disease Induced by Mitomycin C. Chest 2021; 159: 1197-1207
- 35 Ranchoux B, Günther S, Quarck R. et al. Chemotherapy-induced pulmonary hypertension: role of alkylating agents. Am J Pathol 2015; 185: 356-371
- 36 Hlavaty A, Roustit M, Montani D. et al. Identifying new drugs associated with pulmonary arterial hypertension: A WHO pharmacovigilance database disproportionality analysis. Br J Clin Pharmacol 2022; 88: 5227-5237
- 37 Perros F, Günther S, Ranchoux B. et al. Mitomycin-Induced Pulmonary Veno-Occlusive Disease: Evidence From Human Disease and Animal Models. Circulation 2015; 132: 834-847
- 38 Kunadu A, Stalls JS, Labuschagne H. et al. Mitomycin induced pulmonary veno-occlusive disease. Respir Med Case Rep 2021; 34: 101437
- 39 Lechartier B, Boucly A, Solinas S. et al. Pulmonary veno-occlusive disease: illustrative cases and literature review. Eur Respir Rev 2024; 33: 230156
- 40 Zhang C, Lu W, Luo X. et al. Mitomycin C induces pulmonary vascular endothelial-to-mesenchymal transition and pulmonary veno-occlusive disease via Smad3-dependent pathway in rats. Br J Pharmacol 2021; 178: 217-235
- 41 Grynblat J, Khouri C, Hlavaty A. et al. Characteristics and outcomes of patients developing pulmonary hypertension associated with proteasome inhibitors. Eur Respir J 2024; 63: 2302158
- 42 Frumkin LR. Letter by Frumkin Regarding Article, „Dramatically Improved Severe Pulmonary Arterial Hypertension Caused by Qing-Dai (Chinese Herbal Drug) for Ulcerative Colitis“. Int Heart J 2023; 64: 1166
- 43 Kubota K, Imai Y, Okuyama T. et al. Response to the Letter by Frumkin Regarding the Article, „Dramatically Improved Severe Pulmonary Arterial Hypertension Caused by Qing-Dai (Chinese Herbal Drug) for Ulcerative Colitis“. Int Heart J 2023; 64: 1167
- 44 Duncan MS, Alcorn CW, Freiberg MS. et al. Association between HIV and incident pulmonary hypertension in US Veterans: a retrospective cohort study. Lancet Healthy Longev 2021; 2: e417-e425
- 45 Jose A, Rahman N, Opotowsky AR. et al. Association of Cardiopulmonary Hemodynamics and Mortality in Veterans With Liver Cirrhosis: A Retrospective Cohort Study. J Am Heart Assoc 2024; e033847
- 46 Savale L, Guimas M, Ebstein N. et al. Portopulmonary hypertension in the current era of pulmonary hypertension management. J Hepatol 2020; 73: 130-139
- 47 Cajigas HR, Burger CD, Cartin-Ceba R. et al. Portopulmonary Hypertension in Nontransplanted Patients: Results of the Largest US Single-Institution Registry. Mayo Clin Proc 2022; 97: 2236-2247
- 48 Gayen SK, Baughman RP, Nathan SD. et al. Pulmonary hemodynamics and transplant-free survival in sarcoidosis-associated pulmonary hypertension: Results from an international registry. Pulm Circ 2023; 13: e12297
- 49 Benattia A, Bugnet E, Walter-Petrich A. et al. Long-term outcomes of adult pulmonary Langerhans cell histiocytosis: a prospective cohort. Eur Respir J 2022; 59: 2101017
- 50 Thoré P, Jaïs X, Savale L. et al. Pulmonary Hypertension in Patients with Common Variable Immunodeficiency. J Clin Immunol 2021; 41: 1549-1562
- 51 Jutant E-M, Jaïs X, Girerd B. et al. Phenotype and Outcomes of Pulmonary Hypertension Associated with Neurofibromatosis Type 1. Am J Respir Crit Care Med 2020; 202: 843-852
- 52 Ivy D, Rosenzweig EB, Abman SH. et al. Embracing the challenges of neonatal and paediatric pulmonary hypertension. Eur Respir J 2024; 64: 2401345
- 53 Shlobin OA, Adir Y, Barbera JA. et al. Pulmonary hypertension associated with lung diseases. Eur Respir J 2024; 64: 2401200
- 54 Maron BA, Bortman G, De Marco T. et al. Pulmonary hypertension associated with left heart disease. Eur Respir J 2024; 2401344
