Subscribe to RSS

DOI: 10.1055/a-2620-1956
Automated Diabetic Retinopathy Screening in Out-patient Diabetes Care – Comparison of Two Artificial Intelligence Algorithms: RetCAD and OphtAI
Article in several languages: English | deutsch
Abstract
Objective The artificial intelligence (AI) can be applied to screening for diabetic retinopathy (DR) from colour fundus photographs. The prerequisite for this is that the AI used can achieve a similar performance in the real world in different study conditions. The aim of this study is therefore to test and compare the latest version of the AI-based algorithms RetCAD and OphtAI for DR screening in a diabetes outpatient clinic.
Methods In the period from August 2023 to November 2023, 150 diabetics were recruited at the outpatient diabetes center of the University Hospital. For each study participant, images were taken with the handheld retinal camera Aurora (Optomed Plc, Oulu, Finland) in Miosis. The images were examined by the ophthalmologist and by the AI-based algorithms RetCAD version 2.2.0 (Thirona Retina, Nijmegen, Netherlands) and OphtAI version 2.3.4 (Groupe Evolucare Technologies, Le Pecq, France) for the presence of DR. The severity of DR was classified using the International Clinical Diabetic Retinopathy (ICDR) scale. Patients with no retinal changes or a mild DR were advised to have an ophthalmological check-up in one year. In the presence of a moderate, severe or proliferative DR, a referral to the treating ophthalmologist was made. For this reason, the severity levels of moderate, severe and proliferative DR have been summarised under the umbrella term of referable DR.
Results No DR was detected in 123 out of 143 (86.0%) diabetics and mild DR was detected in 10 (7.3%). All patients with moderate DR 7 (5.0%), severe 2 (1.5%) and proliferative DR 1 (0.7%) were grouped together as refererable DR and represented a proportion of 7.3%. The AI-based algorithm RetCAD version 2.2.0 achieved a sensitivity of 90% and a specificity of 100% for the detection of a referable DR compared to ophthalmological image assessment. RetCAD rated 98% of the images for image analysis as sufficient or better. In contrast, the second AI-based algorithm OphtAI version 2.3.4 achieved a sensitivity of 70% and a specificity of 100% for the detection of a referable DR. The OphtAI software was able to perform image analysis on all images.
Conclusion The results for the detection of a referable DR were consistent under study conditions and in clinical use for the AI-based algorithm RetCAD. The AI-based algorithm OphtAI, on the other hand, detected fewer patients with moderate DR, which was reflected in lower sensitivity. Both algorithms correctly assigned all patients with severe and proliferative DR. The AI-based algorithms RetCAD and OphtAI tested appear to be suitable for use in a diabetes outpatient clinic and primary care setting, respectively.
Already known:
-
Diabetic retinopathy is a common complication of diabetes mellitus, so screening for detection and early treatment of DR is critical.
-
The growing number of people with diabetes is placing an increasing burden on the healthcare system.
-
The use of artificial intelligence is well-suited for screening, as retinal imaging combined with an AI-based image analysis algorithm allows for screening examinations to be carried out quickly and resource-consciously.
-
Many studies prove that AI-supported image assessment is equivalent to ophthalmological assessment. However, there is evidence in the literature that the algorithms perform worse under real-world conditions compared to results obtained under study conditions.
Newly described:
-
For this study, the latest versions of two commercially available AI-based algorithms, RetCAD and OphtAI, were tested for the early detection of diabetic retinopathy.
-
The hand-held Aurora retinal camera is recommended, as almost all images could be taken in miosis and evaluated with AI support.
-
RetCAD achieved a sensitivity of 90% and specificity of 100% for the detection of referable DR under real-world conditions.
-
OphtAI achieved a lower sensitivity of 70% and a specificity of 100% for the detection of referable DR. However, all patients with severe and proliferative DR were correctly assigned.
-
With the AI-based algorithms presented here, the number of ophthalmological screening examinations for DR could be reduced by 89%. This would help address the growing number of people with diabetes, while also increasing the capacity for patients with referable DR.
Bereits bekannt:
-
Die diabetische Retinopathie ist eine häufige Komplikation bei Diabetes mellitus, daher ist die Vorsorgeuntersuchung zur Erkennung und frühzeitigen Behandlung der DR entscheidend.
-
Die steigende Anzahl an Personen mit Diabetes stellt eine immer größere Belastung für das Gesundheitssystem dar.
-
Der Einsatz von künstlicher Intelligenz bietet sich für ein Screening an, da mittels Netzhautkamera und einem auf KI basierendem Algorithmus zur Bildanalyse die Vorsorgeuntersuchung schnell und Ressourcen schonend durchgeführt werden kann.
-
Viele Studien belegen, dass die KI-gestützte Bildbeurteilung der augenärztlichen ebenbürtig ist. Allerdings gibt es Hinweise in der Literatur, dass die Algorithmen unter realen Bedingungen schlechter abschneiden, im Vergleich zu den unter Studienbedingungen erzielten Ergebnissen.
Neu beschrieben:
-
Für diese Studie wurden die aktuellsten Versionen von 2 kommerziell erhältlichen KI-basierten Algorithmen RetCAD und OphtAI für die Früherkennung einer diabetischen Retinopathie getestet.
-
Die handgehaltene Netzhautkamera Aurora ist zu empfehlen, da nahezu alle Aufnahmen in Miosis gemacht und KI-gestützt ausgewertet werden konnten.
-
RetCAD erreichte unter realen Bedingungen eine Sensitivität von 90% und Spezifität von 100% für die Erkennung einer überweisungsbedürftigen DR.
-
Für OphtAI zeigte sich eine geringere Sensitivität von 70% und eine Spezifität von 100% für die Detektion einer überweisungsbedürftigen DR. Es wurden allerdings alle Patienten mit schwerer und proliferativer DR korrekt zugeordnet.
-
Mit den hier vorgestellten KI-basierten Algorithmen ließe sich die Zahl an augenärztlichen Vorsorgeuntersuchungen auf DR um 89% reduzieren. Dadurch könnte die steigende Anzahl an Personen mit Diabetes bewältigt und gleichzeitig mehr Kapazität für Patienten mit überweisungsbedürftiger DR geschaffen werden.
Publication History
Received: 29 January 2025
Accepted: 13 May 2025
Accepted Manuscript online:
23 May 2025
Article published online:
18 September 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References/Literatur
- 1 Bundesärztekammer, Kassenärztliche Bundesvereinigung, Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften. Nationale VersorgungsLeitlinie Typ-2-Diabetes – Langfassung, Version 3.0. AWMF-Register-Nr. nvl-001. 2023 https://register.awmf.org/assets/guidelines/nvl-001l_S3_Typ-2-Diabetes_2024-12.pdf
- 2 Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond) 2017; 2: 17
- 3 Schuster AK, Wolfram C, Pfeiffer N. et al. Augenheilkunde 2019 – Wo stehen wir? Eine Betrachtung der Versorgungssituation in Deutschland. Ophthalmologe 2019; 116: 829-837
- 4 Mai J, Schmidt-Erfurth U. Rolle der künstlichen Intelligenz bei verschiedenen retinalen Erkrankungen. Klin Monbl Augenheilkd 2024; 241: 1023-1031
- 5 Wintergerst MWM, Bejan V, Hartmann V. et al. Telemedical Diabetic Retinopathy Screening in a Primary Care Setting: Quality of Retinal Photographs and Accuracy of Automated Image Analysis. Ophthalmic Epidemiol 2022; 29: 286-295
- 6 Wolf RM, Channa R, Liu TYA. et al. Autonomous artificial intelligence increases screening and follow-up for diabetic retinopathy in youth: the ACCESS randomized control trial. Nat Commun 2024; 15: 421
- 7 Abràmoff MD, Lavin PT, Birch M. et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med 2018; 1: 39
- 8 Rajesh AE, Davidson OQ, Lee CS. et al. Artificial Intelligence and Diabetic Retinopathy: AI Framework, Prospective Studies, Head-to-head Validation, and Cost-effectiveness. Diabetes Care 2023; 46: 1728-1739
- 9 Kubin AM, Huhtinen P, Ohtonen P. et al. Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera. Ann Med 2024; 56: 2352018
- 10 Lee AY, Yanagihara RT, Lee CS. et al. Multicenter, Head-to-Head, Real-World Validation Study of Seven Automated Artificial Intelligence Diabetic Retinopathy Screening Systems. Diabetes Care 2021; 44: 1168-1175
- 11 Wilkinson CP, Ferris FL, Klein RE. et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003; 110: 1677-1682
- 12 González-Gonzalo C, Sánchez-Gutiérrez V, Hernández-Martínez P. et al. Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and age-related macular degeneration. Acta Ophthalmol 2020; 98: 368-377
- 13 Skevas C, Weindler H, Levering M. et al. Simultaneous screening and classification of diabetic retinopathy and age-related macular degeneration based on fundus photos-a prospective analysis of the RetCAD system. Int J Ophthalmol 2022; 15: 1985-1993
- 14 Lin DY, Blumenkranz MS, Brothers RJ. et al. The sensitivity and specificity of single-field nonmydriatic monochromatic digital fundus photography with remote image interpretation for diabetic retinopathy screening: a comparison with ophthalmoscopy and standardized mydriatic color photography. Am J Ophthalmol 2002; 134: 204-213
- 15 Williams GA, Scott IU, Haller JA. et al. Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology. Ophthalmology 2004; 111: 1055-1062
- 16 Paul S, Tayar A, Morawiec-Kisiel E. et al. Einsatz von künstlicher Intelligenz im Screening auf diabetische Retinopathie an einer diabetologischen Schwerpunktklinik. Ophthalmologie 2022; 119: 705-713
- 17 Lupidi M, Danieli L, Fruttini D. et al. Artificial intelligence in diabetic retinopathy screening: clinical assessment using handheld fundus camera in a real-life setting. Acta Diabetol 2023; 60: 1083-1088
- 18 Zhou W, Yuan XJ, Li J. et al. Application of non-mydriatic fundus photography-assisted telemedicine in diabetic retinopathy screening. World J Diabetes 2024; 15: 251-259
- 19 Grzybowski A, Brona P. Analysis and Comparison of Two Artificial Intelligence Diabetic Retinopathy Screening Algorithms in a Pilot Study: IDx-DR and Retinalyze. J Clin Med 2021; 10: 2352
- 20 Quellec G, Charrière K, Boudi Y. et al. Deep image mining for diabetic retinopathy screening. Med Image Anal 2017; 39: 178-193
- 21 Kummerle D, Beals D, Simon L. et al. Revolutionizing Diabetic Retinopathy Screening: Integrating AI-Based Retinal Imaging in Primary Care. J CME 2025; 14: 2437294