Subscribe to RSS
DOI: 10.1055/a-2606-2353
Die Brücke zwischen Labor und Klinik: Wie humangenetische Untersuchungen die Therapie bei genetischer Adipositas leiten
The bridge between laboratory and clinic: How genetic testing guides therapy in genetic obesity
Zusammenfassung
Krankheitsauslösende Genveränderungen, die zu einer pathologischen Hunger-Sättigungs-Dysregulation (Hyperphagie) im Hypothalamus führen, können frühmanifeste, extreme Formen von Adipositas verursachen. Da diese Formen im klinischen Alltag häufig schwer von multifaktorieller Adipositas zu unterscheiden sind, hat die humangenetische Diagnostik einen bedeutenden Stellenwert in der Behandlung von Personen mit extremer Adipositas. Als Brücke zwischen Labor und Klinik ermöglicht sie nicht nur einen Einblick in die Pathogenese extremer Adipositas, sondern beeinflusst auch die Auswahl personalisierter Therapieempfehlungen für die Betroffenen. Dabei ist die Hyperphagie ein zentraler Ansatzpunkt: Einerseits sollte sie durch Lebensstilmodifikationen, insbesondere durch die Vermittlung verhaltenstherapeutischer Strategien zum Umgang mit der unphysiologischen Hunger-Sättigungsregulation, adressiert werden. Andererseits erlaubt die Kenntnis der genetischen Ursache bei bestimmten Formen von Adipositas den Einsatz Mechanismus-basierter pharmakologischer Therapien. Darüber hinaus trägt humangenetische Forschung durch die Identifikation von neuen Adipositas-assoziierten Genen und Signalwegen zur Entwicklung neuer Therapiestrategien mit innovativen Ansätzen bei.
Abstract
Disease-causing genetic alterations that lead to an abnormal regulation of hunger and satiety (hyperphagia) in the hypothalamus can cause early-onset, severe forms of obesity. Since these forms are often difficult to distinguish from common obesity in clinical practice, genetic testing plays a crucial role in the clinical care of patients with extreme obesity. Serving as a bridge between the laboratory and the clinic, it not only provides insight into the pathogenesis of extreme obesity but also influences the conception of personalized therapeutic recommendations for affected individuals. In this context, hyperphagia represents a central target: on one hand, it should be addressed through lifestyle modifications and, in particular, through the implementation of behavioural therapeutic strategies to manage the abnormal hunger-satiety regulation. On the other hand, knowledge of the genetic cause in certain forms of obesity allows for the application of targeted mechanism-based pharmacological therapies. Beyond this, genetic research contributes to the development of novel therapeutic strategies with innovative approaches through the identification of new obesity-associated genes and signalling pathways.
Schlüsselwörter
Hyperphagie - extreme Adipositas - individualisierte Therapie - Leptin-Melanokortin-SignalwegPublication History
Article published online:
15 September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Lister NB, Baur LA, Felix JF. et al. Child and adolescent obesity. Nat Rev Dis Primers 2023; 9: 24
- 2 Styne DM, Arslanian SA, Connor EL. et al. Pediatric Obesity-Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2017; 102: 709-757
- 3 Heymsfield SB, Clément K, Dubern B. et al. Defining Hyperphagia for Improved Diagnosis and Management of MC4R Pathway-Associated Disease: A Roundtable Summary. Curr Obes Rep 2025; 14: 13
- 4 Wabitsch M, Farooqi S, Flück CE. et al. Natural History of Obesity Due to POMC, PCSK1, and LEPR Deficiency and the Impact of Setmelanotide. J Endocr Soc 2022; 6: bvac057
- 5 Zhang Y, Proenca R, Maffei M. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425-432
- 6 Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 2019; 241: R1-R33
- 7 Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet 2022; 23: 120-133
- 8 Zorn S, de Groot CJ, Brandt-Heunemann S. et al. Early childhood height, weight, and BMI development in children with monogenic obesity: a European multicentre, retrospective, observational study. Lancet Child Adolesc Health 2025; 9: 297-305
- 9 Abawi O, Wahab RJ, Kleinendorst L. et al. Genetic Obesity Disorders: Body Mass Index Trajectories and Age of Onset of Obesity Compared with Children with Obesity from the General Population. J Pediatr 2023; 262: 113619
- 10 Wade KH, Lam BYH, Melvin A. et al. Loss-of-function mutations in the melanocortin 4 receptor in a UK birth cohort. Nat Med 2021; 27: 1088-1096
- 11 Saeed S, Arslan M, Manzoor J. et al. Genetic Causes of Severe Childhood Obesity: A Remarkably High Prevalence in an Inbred Population of Pakistan. Diabetes 2020; 69: 1424-1438
- 12 Farooqi IS, Wangensteen T, Collins S. et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med 2007; 356: 237-247
- 13
Richards S,
Aziz N,
Bale S.
et al.
Standards and guidelines for the interpretation of sequence variants. Genet Med 2015;
17: 405-424
MissingFormLabel
- 14 Wojcik MH, Lemire G, Berger E. et al. Genome Sequencing for Diagnosing Rare Diseases. N Engl J Med 2024; 390: 1985-1997
- 15 He Y, Brouwers B, Liu H. et al. Human loss-of-function variants in the serotonin 2C receptor associated with obesity and maladaptive behavior. Nat Med 2022; 28: 2537-2046
- 16 Li Y, Cacciottolo TM, Yin N. et al. Loss of transient receptor potential channel 5 causes obesity and postpartum depression. Cell 2024; 187: 4176-4192.e17
- 17 Farooqi IS, Jebb SA, Langmack G. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999; 341: 879-884
- 18 Wabitsch M, Funcke JB, Lennerz B. et al. Biologically inactive leptin and early-onset extreme obesity. N Engl J Med 2015; 372: 48-54
- 19 Hebebrand J, Zorn S, Antel J, von Schnurbein J. et al. First Account of Psychological Changes Perceived by a Female with Congenital Leptin Deficiency upon Treatment with Metreleptin. Obes Facts 2022; 15: 730-735
- 20 Farooqi IS, Bullmore E, Keogh J. et al. Leptin regulates striatal regions and human eating behavior. Science 2007; 317: 1355
- 21 Frank S, Heni M, Moss A. et al. Long-term stabilization effects of leptin on brain functions in a leptin-deficient patient. PLoS One 2013; 8: e65893
- 22 Frank S, Heni M, Moss A. et al. Leptin therapy in a congenital leptin-deficient patient leads to acute and long-term changes in homeostatic, reward, and food-related brain areas. J Clin Endocrinol Metab 2011; 96: E1283-E1287
- 23 Clément K, van den Akker E, Argente J. et al. Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR or POMC deficiency: single-arm, open-label, multicentre, phase 3 trials. Lancet Diabetes Endocrinol 2020; 8: 960-970
- 24 Haqq AM, Chung WK, Dollfus H. et al. Efficacy and safety of setmelanotide, a melanocortin-4 receptor agonist, in patients with Bardet-Biedl syndrome and Alström syndrome: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial with an open-label period. Lancet Diabetes Endocrinol 2022; 10: 859-868
- 25 Kühnen P, Clément K. Long-Term MC4R Agonist Treatment in POMC-Deficient Patients. N Engl J Med 2022; 387: 852-854
- 26 Chung W, Swain J, Kühnen P. et al. 4-year setmelanotide weight outcomes of patients with POMC and LEPR deficiency obesity. Abstracts E, editor. 26th European Congress of Endocrinology; 2024; Stockholm, Sweden. Endocr Abstr: Endocr Abstr; 2024
- 27 Damen L, Donze SH, Kuppens RJ. et al. Three years of growth hormone treatment in young adults with Prader-Willi syndrome: sustained positive effects on body composition. Orphanet J Rare Dis 2020; 15: 163
- 28 Miller JL, Gevers E, Bridges N. et al. Diazoxide Choline Extended-Release Tablet in People With Prader-Willi Syndrome: A Double-Blind, Placebo-Controlled Trial. J Clin Endocrinol Metab 2023; 108: 1676-1685
- 29 Strong TV, Miller JL, McCandless SE. et al. Behavioral changes in patients with Prader-Willi syndrome receiving diazoxide choline extended-release tablets compared to the PATH for PWS natural history study. J Neurodev Disord 2024; 16: 22
- 30 Secher A, Jelsing J, Baquero AF. et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest 2014; 124: 4473-4488
- 31 Iepsen EW, Have CT, Veedfald S. et al. GLP-1 Receptor Agonist Treatment in Morbid Obesity and Type 2 Diabetes Due to Pathogenic Homozygous Melanocortin-4 Receptor Mutation: A Case Report. Cell Rep Med 2020; 1: 100006
- 32 Iepsen EW, Zhang J, Thomsen HS. et al. Patients with Obesity Caused by Melanocortin-4 Receptor Mutations Can Be Treated with a Glucagon-like Peptide-1 Receptor Agonist. Cell Metab 2018; 28: 23-32.e3
- 33 Jastreboff AM, Aronne LJ, Ahmad NN. et al. Tirzepatide Once Weekly for the Treatment of Obesity. N Engl J Med 2022; 387: 205-216
- 34 Müller TD, Blüher M, Tschöp MH. et al. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov 2022; 21: 201-223
- 35 Enebo LB, Berthelsen KK, Kankam M. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of concomitant administration of multiple doses of cagrilintide with semaglutide 2·4 mg for weight management: a randomised, controlled, phase 1b trial. Lancet 2021; 397: 1736-1748
- 36 Boyle CN, Lutz TA, Le Foll C. Amylin – Its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity. Mol Metab 2018; 8: 203-220
- 37 Frias JP, Deenadayalan S, Erichsen L. et al. Efficacy and safety of co-administered once-weekly cagrilintide 2·4 mg with once-weekly semaglutide 2·4 mg in type 2 diabetes: a multicentre, randomised, double-blind, active-controlled, phase 2 trial. Lancet 2023; 402: 720-730
- 38 O'Brien PE, Hindle A, Brennan L. et al. Long-Term Outcomes After Bariatric Surgery: a Systematic Review and Meta-analysis of Weight Loss at 10 or More Years for All Bariatric Procedures and a Single-Centre Review of 20-Year Outcomes After Adjustable Gastric Banding. Obes Surg 2019; 29: 3-14
- 39 Ryder J, Jenkins TM, Xie C. et al. Ten-Year Outcomes after Bariatric Surgery in Adolescents. N Engl J Med 2024; 391: 1656-1658
- 40 Cooiman MI, Kleinendorst L, Aarts EO. et al. Genetic Obesity and Bariatric Surgery Outcome in 1014 Patients with Morbid Obesity. Obes Surg 2020; 30: 470-477
- 41 Vos N, Oussaada SM, Cooiman MI. et al. Bariatric Surgery for Monogenic Non-syndromic and Syndromic Obesity Disorders. Curr Diab Rep 2020; 20: 44
- 42 Poitou C, Puder L, Dubern B. et al. Long-term outcomes of bariatric surgery in patients with bi-allelic mutations in the POMC, LEPR, and MC4R genes. Surg Obes Relat Dis 2021; 17: 1449-1456
- 43 Wolfe G, Salehi V, Browne A. et al. Metabolic and bariatric surgery for obesity in Prader Willi syndrome: systematic review and meta-analysis. Surg Obes Relat Dis 2023; 19: 907-915
- 44 Reinehr T, Hebebrand J, Friedel S. et al. Lifestyle intervention in obese children with variations in the melanocortin 4 receptor gene. Obesity (Silver Spring) 2009; 17: 382-389
- 45 Miller JL, Tan M. Dietary Management for Adolescents with Prader-Willi Syndrome. Adolesc Health Med Ther 2020; 11: 113-118
- 46 Weghuber D, Barrett T, Barrientos-Pérez M. et al. Once-Weekly Semaglutide in Adolescents with Obesity. N Engl J Med 2022; 387: 2245-2257