CC BY 4.0 · Pharmacopsychiatry
DOI: 10.1055/a-2603-0871
Original Paper

Influence of Glutamate Neurotransmission Genes on the Outcomes of Antipsychotic Treatments

Marc Cendrós
1   Eugenomic S.L., Barcelona, Spain
2   Fundació Docència i Recerca Mútua Terrassa Terrassa, Spain
,
3   Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain
4   Barcelona Clinic Schizophrenia Unit (BCSU), Neurosciences Institute, Hospital Clínic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
,
Mercè Torra
5   Pharmacology & Toxicology Unit, Dept. Biochemistry & Molecular Genetics, Hospital Clínic of Barcelona, Barcelona, Spain
,
Rafael Penadés
3   Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain
4   Barcelona Clinic Schizophrenia Unit (BCSU), Neurosciences Institute, Hospital Clínic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
,
Alexandre González-Rodríguez
6   Dept. Mental Health, Mutua Terrassa University Hospital, Fundació Docència i Recerca Mutua Terrassa, University of Barcelona, CIBERSAM, Barcelona, Terrassa, Spain
,
Mercè Brunet
5   Pharmacology & Toxicology Unit, Dept. Biochemistry & Molecular Genetics, Hospital Clínic of Barcelona, Barcelona, Spain
,
Josefina Perez-Blanco
3   Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain
7   Dept. Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
,
Natalia Cullell
2   Fundació Docència i Recerca Mútua Terrassa Terrassa, Spain
,
Alexandre Serra-Llovich
2   Fundació Docència i Recerca Mútua Terrassa Terrassa, Spain
,
Marta H. Hernandez
2   Fundació Docència i Recerca Mútua Terrassa Terrassa, Spain
8   School of Health Sciences Blanquerna, University Ramon Llull, Barcelona, Spain
,
2   Fundació Docència i Recerca Mútua Terrassa Terrassa, Spain
3   Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain
› Author Affiliations

Abstract

Introduction

Traditionally, the aetiology of schizophrenia has been attributed to dopaminergic neurotransmission, but more recent information points to the role of glutamate pathways. Glutamatergic involvement in schizophrenia might be extensible to drug response. The aim of the study was to explore whether the variation in glutamate receptors, transporters and metabolism can influence the outcome of drug treatments.

Methods

A total of 45 polymorphisms in the genes GRIN1, GRIN2A, GRIN2B, GRIN3A, GRIA1, GRIK2, GRM2, GRM3, GRM5, GRM8, SLC1A1, SLC1A3 and GAD1 were genotyped in 258 patients with schizophrenia. Efficacy and side effects were evaluated with the Positive and Negative Symptoms Scale and the UKU scale, respectively, at baseline and after 12 weeks.

Results

The analysis revealed associations between outcomes, including response and adverse effects and genetic variants in several genes (GAD1, GRIA1, GRIN2A, GRIN3A, GRIK2, GRM2, GRM5, GRM8 and SLC1A3). An association of rs1864205 in GRIA1 with autonomic side effects bordered statistical significance after correction for multiple comparisons.

Discussion

Our results suggest that genetic variation in glutamatergic pathways can influence the efficacy and safety of antipsychotic drugs.

# These authors are equal corresponding authors: María J. Arranz and Rosa Catalán




Publication History

Received: 24 April 2024

Accepted: 27 February 2025

Article published online:
17 June 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Institute of health Metrics and Evaluation (IHME). Global Health Data Exchange (GHDx) http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019-permalink/27a7644e8ad28e739382d31e77589dd7
  • 2 Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: Version III--the final common pathway. Schizophr Bull 2009; 35: 549-562
  • 3 Madras BK. History of the discovery of the antipsychotic dopamine D2 receptor: A basis for the dopamine hypothesis of schizophrenia. J Hist Neurosci 2013; 22: 62-78
  • 4 Nord M, Farde L. Antipsychotic occupancy of dopamine receptors in schizophrenia. CNS Neurosci Ther 2011; 17: 97-103
  • 5 Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci 2019; 73: 204-215
  • 6 Hu W, MacDonald ML, Elswick DE. et al. The glutamate hypothesis of schizophrenia: Evidence from human brain tissue studies. Ann N Y Acad Sci 2015; 1338: 38-57
  • 7 Fachim HA, Loureiro CM, Corsi-Zuelli F. et al. GRIN2B promoter methylation deficits in early-onset schizophrenia and its association with cognitive function. Epigenomics 2019; 11: 401-410
  • 8 Kristiansen LV, Patel SA, Haroutunian V. et al. Expression of the NR2B-NMDA receptor subunit and its Tbr-1/CINAP regulatory proteins in postmortem brain suggest altered receptor processing in schizophrenia. Synapse 2010; 64: 495-502
  • 9 Ibrahim HM, Hogg AJ, Healy DJ. et al. Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. Am J Psychiatry 2000; 157: 1811-1823
  • 10 Myers SJ, Yuan H, Kang JQ. et al. Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F1000Res 2019; 8 F1000 Faculty Rev-1940
  • 11 Yang Y, Li W, Zhang H. et al. Association study of N-methyl-D-aspartate receptor subunit 2B (GRIN2B) polymorphisms and schizophrenia symptoms in the Han Chinese population. PLoS One 2015; 10: e0125925
  • 12 Martucci L, Wong AH, De Luca V. et al. N-methyl-D-aspartate receptor NR2B subunit gene GRIN2B in schizophrenia and bipolar disorder: Polymorphisms and mRNA levels. Schizophr Res 2006; 84: 214-221
  • 13 Chiu HJ, Wang YC, Liou YJ. et al. Association analysis of the genetic variants of the N-methyl D-aspartate receptor subunit 2b (NR2b) and treatment-refractory schizophrenia in the Chinese. Neuropsychobiology 2003; 47: 178-181
  • 14 Hong CJ, Yu YW, Lin CH. et al. Association analysis for NMDA receptor subunit 2B (GRIN2B) genetic variants and psychopathology and clozapine response in schizophrenia. Psychiatr Genet 2001; 11: 219-222
  • 15 Magri C, Gardella R, Barlati SD. et al. Glutamate AMPA receptor subunit 1 gene (GRIA1) and DSM-IV-TR schizophrenia: A pilot case-control association study in an Italian sample. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 287-293
  • 16 Kang WS, Park JK, Kim SK. et al. Genetic variants of GRIA1 are associated with susceptibility to schizophrenia in Korean population. Mol Biol Rep 2012; 39: 10697-10703
  • 17 Crisafulli C, Chiesa A, De Ronchi D. et al. Influence of GRIA1, GRIA2 and GRIA4 polymorphisms on diagnosis and response to antipsychotic treatment in patients with schizophrenia. Neurosci Lett 2012; 506: 170-174
  • 18 Bah J, Quach H, Ebstein RP. et al. Maternal transmission disequilibrium of the glutamate receptor GRIK2 in schizophrenia. Neuroreport 2004; 15: 1987-1991
  • 19 Ibrahim HM, Hogg AJ, Healy DJ. et al. Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. Am J Psychiatry 2000; 157: 1811-1823
  • 20 Kordi-Tamandani DM, Dahmardeh N, Torkamanzehi A. Evaluation of hypermethylation and expression pattern of GMR2, GMR5, GMR8, and GRIA3 in patients with schizophrenia. Gene 2013; 515: 163-166
  • 21 Reynolds GP, McGowan OO, Dalton CF. Pharmacogenomics in psychiatry: The relevance of receptor and transporter polymorphisms. Br J Clin Pharmacol 2014; 77: 654-672
  • 22 Li W, Ju K, Li Z. et al. Significant association of GRM7 and GRM8 genes with schizophrenia and major depressive disorder in the Han Chinese population. Eur Neuropsychopharmacol 2016; 26: 136-146
  • 23 Zhang L, Zhong X, An Z. et al. Association analysis of the GRM8 gene with schizophrenia in the Uygur Chinese population. Hereditas 2014; 151: 140-144
  • 24 Fiorentino A, Sharp SI, McQuillin A. Association of rare variation in the glutamate receptor gene SLC1A2 with susceptibility to bipolar disorder and schizophrenia. Eur J Hum Genet 2015; 23: 1200-1206
  • 25 Spangaro M, Bosia M, Zanoletti A. et al. Exploring effects of EAAT polymorphisms on cognitive functions in schizophrenia. Pharmacogenomics 2014; 15: 925-932
  • 26 Wang L, Ma T, Qiao D. et al. Polymorphism of rs12294045 in EAAT2 gene is potentially associated with schizophrenia in Chinese Han population. BMC Psychiatry 2022; 22: 171
  • 27 Spangaro M, Bosia M, Zanoletti A. et al. Exploring effects of EAAT polymorphisms on cognitive functions in schizophrenia. Pharmacogenomics 2014; 15: 925-932
  • 28 Zhang B, Guan F, Chen G. et al. Common variants in SLC1A2 and schizophrenia: Association and cognitive function in patients with schizophrenia and healthy individuals. Schizophr Res 2015; 169: 128-134
  • 29 Parkin GM, Gibbons A, Udawela M. et al. Excitatory amino acid transporter (EAAT)1 and EAAT2 mRNA levels are altered in the prefrontal cortex of subjects with schizophrenia. J Psychiatr Res 2020; 123: 151-158
  • 30 Magri C, Giacopuzzi E, La Via L. et al. A novel homozygous mutation in GAD1 gene described in a schizophrenic patient impairs activity and dimerization of GAD67 enzyme. Sci Rep 2018; 8: 15470 Published 2018 Oct 19
  • 31 Miyazawa A, Kanahara N, Kogure M. et al. A preliminary genetic association study of GAD1 and GABAB receptor genes in patients with treatment-resistant schizophrenia. Mol Biol Rep 2022; 49: 2015-2024
  • 32 Zink M, Englisch S, Schmitt A. Antipsychotic treatment modulates glutamate transport and NMDA receptor expression. Eur Arch Psychiatry Clin Neurosci 2014; 264: S67-S82
  • 33 Sacchetti E, Magri C, Minelli A. et al. The GRM7 gene, early response to risperidone, and schizophrenia: A genome-wide association study and a confirmatory pharmacogenetic analysis. Pharmacogenomics J 2017; 17: 146-154
  • 34 Hernandez M, Cullell N, Cendros M. et al. Clinical utility and implementation of pharmacogenomics for the personalisation of antipsychotic treatments. Pharmaceutics 2024; 16: 244 Published 2024 Feb 7
  • 35 Arranz MJ, Gonzalez-Rodriguez A, Perez-Blanco J. et al. A pharmacogenetic intervention for the improvement of the safety profile of antipsychotic treatments. Transl Psychiatry 2019; 9: 177 Published 2019 Jul 25
  • 36 Frahnert C, Rao ML, Grasmäder K. Analysis of eighteen antidepressants, four atypical antipsychotics and active metabolites in serum by liquid chromatography: A simple tool for therapeutic drug monitoring. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 794: 35-47
  • 37 Leucht S, Samara M, Heres S. et al. Dose equivalents for second-generation antipsychotic drugs: The classical mean dose method. Schizophr Bull 2015; 41: 1397-1402
  • 38 Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987; 13: 261-276
  • 39 Leucht S, Kane JM, Kissling W. et al. What does the PANSS mean?. Schizophr Res 2005; 79: 231-238
  • 40 Lingjaerde O, Ahlfors UG, Bech P. et al. The UKU side effect rating scale. A new comprehensive rating scale for psychotropic drugs and a cross-sectional study of side effects in neuroleptic-treated patients. Acta Psychiatr Scand Suppl 1987; 334: 1-100
  • 41 Diana MC, Santoro ML, Xavier G. et al. Low expression of Gria1 and Grin1 glutamate receptors in the nucleus accumbens of Spontaneously Hypertensive Rats (SHR). Psychiatry Res 2015; 229: 690-694
  • 42 Drago A, Giegling I, Schäfer M. et al. AKAP13, CACNA1, GRIK4 and GRIA1 genetic variations may be associated with haloperidol efficacy during acute treatment. Eur Neuropsychopharmacol 2013; 23: 887-894