Subscribe to RSS
DOI: 10.1055/a-2602-5567
Effect of Obesity and Metabolic Syndrome on Pulmonary Functions and Exhaled Nitric Oxide in Adolescents
Einfluss von Adipositas und Metabolischem Syndrom auf die Lungenfunktion und den ausgeatmeten Stickstoffmonoxid bei Jugendlichen
Abstract
Background
Obesity, linked to various comorbidities like metabolic syndrome (MS) due to its proinflammatory nature, contributes to elevated exhaled nitric oxide levels, impacting multiple physiological systems, including the respiratory system. This study aimed to examine the impact of obesity and MS on lung function and airway inflammation in adolescents. We investigated the relationship between body fat distribution and pulmonary function parameters, and assess fractional exhaled nitric oxide (FeNO) levels as an indicator of airway inflammation.
Patient and methods
This study included 100 children aged 10 to 18 years, comprising 50 obese individuals and 50 non-obese healthy controls. Participants were categorized based on their relative body mass index (RBMI), presence of MS, and body fat distribution. Pulmonary function tests and FeNO levels were compared between the groups.
Results
The FEV1/FVC and FRC values were significantly lower in the obese group. Among obese participants, MS was present in 30%, and those with MS had higher ERV. In male subjects, FEV1/FVC was lower and FeNO levels were higher in those with increased waist circumference. There was a positive correlation between RBMI and FVC, TLC, and a negative correlation between RBMI and FEV1/FVC, FRC. Negative correlations were also detected between waist and neck circumferences and FEV1/FVC, FRC, RV values.
Conclusion
Obesity and MS negatively impact pulmonary function, particularly reducing FEV1/FVC and FRC. Furthermore, central adiposity may contribute to airway inflammation, as indicated by increased FeNO levels.
Zusammenfassung
Hintergrund
Adipositas, aufgrund ihrer proinflammatorischen Natur mit verschiedenen Begleiterkrankungen wie dem metabolischen Syndrom (MS) verbunden, trägt zu erhöhten Konzentrationen von ausgeatmetem Stickstoffmonoxid bei, was mehrere physiologische Systeme, einschließlich des Atmungssystems, beeinflusst.Diese Studie untersuchte den Einfluss von Adipositas und MS auf die Lungenfunktion und die Entzündung der Atemwege. Wir untersuchten die Beziehung zwischen Fettverteilung und pulmonalen Funktionsparametern und bewerteten FeNO-Werte als Indikator für Atemwegsentzündungen.
Patienten und Methoden
Diese Studie umfasste 100 Kinder im Alter von 10 bis 18 Jahren, darunter 50 adipöse und 50 gesunde Kontrollen. Die Teilnehmer wurden nach relativem Body-Mass-Index (RBMI), Vorhandensein von MS und Fettverteilung kategorisiert. Lungenfunktionstests und FeNO-Werte wurden zwischen den Gruppen verglichen.
Ergebnisse
Die FEV1/FVC- und FRC-Werte waren in der adipösen Gruppe signifikant niedriger. Bei adipösen Teilnehmern war MS in 30% vorhanden, und diejenigen mit MS hatten höhere ERV-Werte. Bei männlichen Probanden waren die FEV1/FVC-Werte niedriger und die FeNO-Werte bei erhöhtem Taillenumfang höher. Es gab eine positive Korrelation zwischen RBMI und FVC, TLC sowie eine negative Korrelation zwischen RBMI und FEV1/FVC, FRC. Negative Korrelationen wurden auch zwischen Taillen- und Halsumfang sowie FEV1/FVC, FRC und RV-Werten festgestellt.
Schlussfolgerung
Adipositas und MS haben negative Auswirkungen auf die Lungenfunktion, insbesondere durch eine Reduzierung von FEV1/FVC und FRC. Darüber hinaus kann eine zentrale Adipositas zur Entzündung der Atemwege beitragen, wie die erhöhten FeNO-Werte zeigen.
Keywords
Body fat distribution - Exhaled nitric oxide - Metabolic syndrome - Obesity - Pulmonary function testSchlüsselwörter
Körperfettverteilung - Ausgeatmetes Stickstoffmonoxid - Metabolisches Syndrom - Adipositas - LungenfunktionstestPublication History
Article published online:
10 July 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
References
- 1 Zimmet P, Alberti KGM, Kaufman F. et al. The metabolic syndrome in children and adolescents – an IDF consensus report. Pediatr Diabetes 2007; 8: 299-306
- 2 Suratt BT, Ubags ND, Rastogi D. et al. An official american thoracic society workshop report: obesity and metabolism. An emerging frontier in lung health and disease. Ann Am Thorac Soc 2017; 14: 1050-1059
- 3 Gaillard EA, Kuehni CE, Turner S. et al. European Respiratory Society clinical practice guidelines for the diagnosis of asthma in children aged 5-16 years. Eur Respir J 2021; 58: 2004173
- 4 Uppalapati A, Gogineni S, Espiritu JR. Association between Body Mass Index (BMI) and fraction of exhaled nitric oxide (FeNO) levels in the National Health and Nutrition Examination Survey (NHANES) 2007–2010. Obes Res Clin Pract 2016; 10: 652-658
- 5 Freemark M. Childhood Obesity. Brook’s Clinical Pediatric Endocrinology. 2009: 530-558
- 6 Demir K, Konakçı E, Özkaya G. et al. New features for child metrics: further growth references and blood pressure calculations. J Clin Res Pediatr Endocrinol 2020; 12: 125
- 7 Öztürk A, Borlu A, Çiçek B. et al. 0-18 yaş çocuk ve adolesanlarda büyüme eğrileri. Türkiye Aile Hekimliği Dergisi 2011; 15: 112-29.
- 8 Wanger J, Clausen JL, Coates A. et al. Standardisation of the measurement of lung volumes. Eur Respir J 2005; 26: 511-522
- 9 American Thoracic Society, European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med 2005; 171: 912-930
- 10 Han YY, Forno E, Celedon JC. Adiposity, fractional exhaled nitric oxide, and asthma in US children. Am J Respir Crit Care Med 2014; 190: 32-39
- 11 Chu YT, Chen WY, Wang TN. et al. Extreme BMI predicts higher asthma prevalence and is associated with lung function impairment in school-aged children. Pediatr Pulmonol 2009; 44: 472-479
- 12 Green M, Mead J, Turner JM. Variability of maximum expiratory flow-volume curves. J Appl Physiol 1974; 37: 67-74
- 13 Mead J. Dysanapsis in normal lungs assessed by the relationship between maximal flow, static recoil, and vital capacity. Am Rev Respir Dis 1980; 121: 339-342
- 14 Forno E, Weiner DJ, Mullen J. et al. Obesity and Airway Dysanapsis in Children with and without Asthma. Am J Respir Crit Care Med 2017; 195: 314-323
- 15 Rastogi D, Bhalani K, Hall CB. et al. Association of pulmonary function with adiposity and metabolic abnormalities in urban minority adolescents. Ann Am Thorac Soc 2014; 11: 744-752
- 16 Jones RL, Nzekwu MMU. The effects of body mass index on lung volumes. Chest 2006; 130: 827-833
- 17 Akın O, Arslan M, Haymana C. et al. Association of neck circumference and pulmonary function in children. Ann Allergy Asthma Immunol 2017; 119: 27-30
- 18 Salome CM, King GG, Berend N. Physiology of obesity and effects on lung function. J Appl Physiol 2010; 108: 206-211
- 19 Wonisch W, Falk A, Sundl I. et al. Oxidative stress increases continuously with BMI and age with unfavourable profiles in males. Aging Male 2012; 15: 159-165
- 20 Erkoçoğlu M, Kaya A, Özcan C. et al. The effect of obesity on the level of fractional exhaled nitric oxide in children with asthma. Int Arch Allergy Immunol 2013; 162: 156-162
- 21 Manna A, Montella S, Maniscalco M. et al. Clinical application of nasal nitric oxide measurement in pediatric airway diseases. Pediatr Pulmonol 2015; 50: 85-99
- 22 Flashner BM, Rifas-Shiman SL, Oken E. et al. Obesity, sedentary lifestyle, and exhaled nitric oxide in an early adolescent cohort. Pediatr Pulmonol 2020; 55: 503-509
- 23 Guo Y, Ma J, Lu W. et al. Associations of exhaled carbon monoxide and fractional exhaled nitric oxide with metabolic syndrome: a cohort Study. Sci Rep 2016; 6: 24532
- 24 Kut A. Obezite ve sağlıklı yaşam tarzı. Sağlıklı Yaşam Dergisi, Tanıtım Sayısı. 2009: 8-27