RSS-Feed abonnieren

DOI: 10.1055/a-2378-6138
Role of Artificial Intelligence in Retinal Diseases
Artikel in mehreren Sprachen: English | deutschAuthors

Abstract
Artificial intelligence (AI) has already found its way into ophthalmology, with the first approved algorithms that can be used in clinical routine. Retinal diseases in particular are proving to be an important area of application for AI, as they are the main cause of blindness and the number of patients suffering from retinal diseases is constantly increasing. At the same time, regular imaging using high-resolution modalities in a standardised and reproducible manner generates immense amounts of data that can hardly be processed by human experts. In addition, ophthalmology is constantly experiencing new developments and breakthroughs that require a re-evaluation of patient management in routine clinical practice. AI is able to analyse these volumes of data efficiently and objectively and also provide new insights into disease progression and therapeutic mechanisms by identifying relevant biomarkers. AI can make a significant contribution to screening, classification and prognosis of various retinal diseases and can ultimately be a clinical decision support system, that significantly reduces the burden on both everyday clinical practice and the healthcare system, by making more efficient use of costly and time-consuming resources.
Publikationsverlauf
Eingereicht: 24. April 2024
Angenommen: 30. Juli 2024
Artikel online veröffentlicht:
16. September 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References/Literatur
- 1
Klaver CC,
Wolfs RC,
Vingerling JR.
et al.
Age-specific prevalence and causes of blindness and visual impairment in an older
population: the Rotterdam Study. Arch Ophthalmol 1998; 116: 653-658
Reference Ris Wihthout Link
- 2
Lim JH,
Wickremasinghe SS,
Xie J.
et al.
Delay to treatment and visual outcomes in patients treated with anti-vascular endothelial
growth factor for age-related macular degeneration. Am J Ophthalmol 2012; 153: 678-686
686.e1–2
Reference Ris Wihthout Link
- 3
Bressler NM,
Doan QV,
Varma R.
et al.
Estimated cases of legal blindness and visual impairment avoided using ranibizumab
for choroidal neovascularization: non-Hispanic white population in the United States
with age-related macular degeneration. Arch Ophthal 2011; 129: 709-717
Reference Ris Wihthout Link
- 4
Johnston RL,
Lee AY,
Buckle M.
et al.
UK Age-Related Macular Degeneration Electronic Medical Record System (AMD EMR) Users
Group Report IV: Incidence of Blindness and Sight Impairment in Ranibizumab-Treated
Patients. Ophthalmology 2016; 123: 2386-2392
Reference Ris Wihthout Link
- 5
Heier JS,
Lad EM,
Holz FG.
et al.
Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular
degeneration (OAKS and DERBY): two multicentre, randomised, double-masked, sham-controlled,
phase 3 trials. Lancet 2023; 402: 1434-1448
Reference Ris Wihthout Link
- 6
Khanani AM,
Patel SS,
Staurenghi G.
et al.
Efficacy and safety of avacincaptad pegol in patients with geographic atrophy (GATHER2):
12-month results from a randomised, double-masked, phase 3 trial. Lancet 2023; 402:
1449-1458
Reference Ris Wihthout Link
- 7
Schmidt-Erfurth U,
Klimscha S,
Waldstein SM.
et al.
A view of the current and future role of optical coherence tomography in the management
of age-related macular degeneration. Eye (Lond) 2017; 31: 26-44
Reference Ris Wihthout Link
- 8
Schmidt-Erfurth U,
Sadeghipour A,
Gerendas BS.
et al.
Artificial intelligence in retina. Prog Retin Eye Res 2018; 67: 1-29
Reference Ris Wihthout Link
- 9
LeCun Y,
Bengio Y,
Hinton G.
Deep learning. Nature 2015; 521: 436-444
Reference Ris Wihthout Link
- 10
Teo ZL,
Tham YC,
Yu M.
et al.
Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic
Review and Meta-analysis. Ophthalmology 2021; 128: 1580-1591
Reference Ris Wihthout Link
- 11
Abràmoff MD,
Lavin PT,
Birch M.
et al.
Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic
retinopathy in primary care offices. NPJ Digit Med 2018; 1: 39
Reference Ris Wihthout Link
- 12
Bhaskaranand M,
Ramachandra C,
Bhat S.
et al.
The Value of Automated Diabetic Retinopathy Screening with the EyeArt System: A Study
of More Than 100,000 Consecutive Encounters from People with Diabetes. Diabetes Technol
Ther 2019; 21: 635-643
Reference Ris Wihthout Link
- 13
Lawrence MG.
The accuracy of digital-video retinal imaging to screen for diabetic retinopathy:
an analysis of two digital-video retinal imaging systems using standard stereoscopic
seven-field photography and dilated clinical examination as reference standards. Trans
Am Ophthalmol Soc 2004; 102: 321-340
Reference Ris Wihthout Link
- 14
Flaxel CJ,
Adelman RA,
Bailey ST.
et al.
Diabetic Retinopathy Preferred Practice Pattern®
. Ophthalmology 2020; 127: P66-P145
Reference Ris Wihthout Link
- 15
Gulshan V,
Peng L,
Coram M.
et al.
Development and Validation of a Deep Learning Algorithm for Detection of Diabetic
Retinopathy in Retinal Fundus Photographs. JAMA 2016; 316: 2402-2410
Reference Ris Wihthout Link
- 16
Ting DSW,
Cheung CY,
Lim G.
et al.
Development and Validation of a Deep Learning System for Diabetic Retinopathy and
Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes.
JAMA 2017; 318: 2211-2223
Reference Ris Wihthout Link
- 17
Gerendas BS,
Bogunovic H,
Sadeghipour A.
et al.
Computational image analysis for prognosis determination in DME. Vis Res 2017; 139:
204-210
Reference Ris Wihthout Link
- 18
Wong WL,
Su X,
Li X.
et al.
Global prevalence of age-related macular degeneration and disease burden projection
for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2014;
2: e106-e116
Reference Ris Wihthout Link
- 19
Li JQ,
Welchowski T,
Schmid M.
et al.
Prevalence and incidence of age-related macular degeneration in Europe: a systematic
review and meta-analysis. Br J Ophthalmol 2020; 104: 1077-1084
Reference Ris Wihthout Link
- 20
Ferris FL3rd
Wilkinson CP,
Bird A.
et al.
Clinical classification of age-related macular degeneration. Ophthalmology 2013; 120:
844-851
Reference Ris Wihthout Link
- 21
Burlina PM,
Joshi N,
Pekala M.
et al.
Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using
Deep Convolutional Neural Networks. JAMA Ophthalmol 2017; 135: 1170-1176
Reference Ris Wihthout Link
- 22
Venhuizen FG,
van Ginneken B,
van Asten F.
et al.
Automated Staging of Age-Related Macular Degeneration Using Optical Coherence Tomography.
Invest Ophthalmol Vis Sci 2017; 58: 2318-2328
Reference Ris Wihthout Link
- 23
Leingang O,
Riedl S,
Mai J.
et al.
Automated deep learning-based AMD detection and staging in real-world OCT datasets
(PINNACLE study report 5). Sci Rep 2023; 13: 19545
Reference Ris Wihthout Link
- 24
Schmidt-Erfurth U,
Waldstein SM,
Klimscha S.
et al.
Prediction of Individual Disease Conversion in Early AMD Using Artificial Intelligence.
Invest Ophthalmol Vis Sci 2018; 59: 3199-3208
Reference Ris Wihthout Link
- 25
Schmidt-Erfurth U,
Vogl WD,
Jampol LM.
et al.
Application of Automated Quantification of Fluid Volumes to Anti-VEGF Therapy of Neovascular
Age-Related Macular Degeneration. Ophthalmology 2020; 127: 1211-1219
Reference Ris Wihthout Link
- 26
Schmidt-Erfurth U,
Waldstein SM.
A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration.
Prog Retin Eye Res 2016; 50: 1-24
Reference Ris Wihthout Link
- 27
Schmidt-Erfurth U,
Reiter GS,
Riedl S.
et al.
AI-based monitoring of retinal fluid in disease activity and under therapy. Prog Retin
Eye Res 2022; 86: 100972
Reference Ris Wihthout Link
- 28
Göbel AP,
Fleckenstein M,
Schmitz-Valckenberg S.
et al.
Imaging geographic atrophy in age-related macular degeneration. Ophthalmologica 2011;
226: 182-190
Reference Ris Wihthout Link
- 29
Mai J,
Lachinov D,
Riedl S.
et al.
Clinical validation for automated geographic atrophy monitoring on OCT under complement
inhibitory treatment. Sci Rep 2023; 13: 7028
Reference Ris Wihthout Link
- 30
Schmidt-Erfurth U,
Mai J,
Reiter GS.
et al.
Therapeutic effect of pegcetacoplan on retinal pigment epithelium (RPE) and photoreceptor
(PR) integrity in geographic atrophy (GA) in the phase III OAKS and DERBY trials.
Invest Ophthalmol Vis Sci 2023; 64: 919
Reference Ris Wihthout Link
- 31
Anegondi N,
Gao SS,
Steffen V.
et al.
Deep Learning to Predict Geographic Atrophy Area and Growth Rate from Multimodal Imaging.
Ophthalmol Retina 2023; 7: 243-252
Reference Ris Wihthout Link
- 32
Gigon A,
Mosinska A,
Montesel A.
et al.
Personalized Atrophy Risk Mapping in Age-Related Macular Degeneration. Transl Vis
Sci Technol 2021; 10: 18
Reference Ris Wihthout Link
- 33
Mai J,
Lachinov D,
Reiter GS.
et al.
Deep Learning-Based Prediction of Individual Geographic Atrophy Progression from a
Single Baseline OCT. Ophthalmol Sci 2024; 4: 100466
Reference Ris Wihthout Link
- 34
Gallardo M,
Munk MR,
Kurmann T.
et al.
Machine Learning Can Predict Anti-VEGF Treatment Demand in a Treat-and-Extend Regimen
for Patients with Neovascular AMD, DME, and RVO Associated Macular Edema. Ophthalmol
Retina 2021; 5: 604-624
Reference Ris Wihthout Link
- 35
Chandra RS,
Ying GS.
Evaluation of Multiple Machine Learning Models for Predicting Number of Anti-VEGF
Injections in the Comparison of AMD Treatment Trials (CATT). Transl Vis Sci Technol
2023; 12: 18
Reference Ris Wihthout Link
- 36
Bogunović H,
Waldstein SM,
Schlegl T.
et al.
Prediction of Anti-VEGF Treatment Requirements in Neovascular AMD Using a Machine
Learning Approach. Invest Ophthalmol Vis Sci 2017; 58: 3240-3248
Reference Ris Wihthout Link
- 37
Bogunovic H,
Waldstein SM,
Sadeghipour A.
et al.
Artificial intelligence to predict optimal retreatment intervals in treat-and-extend
(T&E). Invest Ophthalmol Vis Sci 2018; 59: 1620
Reference Ris Wihthout Link
- 38
Bogunović H,
Mares V,
Reiter GS.
et al.
Predicting treat-and-extend outcomes and treatment intervals in neovascular age-related
macular degeneration from retinal optical coherence tomography using artificial intelligence.
Front Med (Lausanne) 2022; 9: 958469
Reference Ris Wihthout Link
- 39
Campbell JP,
Ataer-Cansizoglu E,
Bolon-Canedo V.
et al.
Expert diagnosis of plus disease in retinopathy of prematurity from computer-based
image analysis. JAMA Ophthalmol 2016; 134: 651-657
Reference Ris Wihthout Link
- 40
Kim SJ,
Cho KJ,
Oh S.
Development of machine learning models for diagnosis of glaucoma. PLoS One 2017; 12:
e0177726
Reference Ris Wihthout Link
- 41
Vogl WD,
Waldstein SM,
Gerendas BS.
et al.
Analyzing and Predicting Visual Acuity Outcomes of Anti-VEGF Therapy by a Longitudinal
Mixed Effects Model of Imaging and Clinical Data. Invest Ophthalmol Vis Sci 2017;
58: 4173-4181
Reference Ris Wihthout Link
- 42
Chen TC,
Lim WS,
Wang VY.
et al.
Artificial Intelligence-Assisted Early Detection of Retinitis Pigmentosa – the Most
Common Inherited Retinal Degeneration. J Digit Imaging 2021; 34: 948-958
Reference Ris Wihthout Link
- 43
Liu YY,
Ishikawa H,
Chen M.
et al.
Computerized macular pathology diagnosis in spectral domain optical coherence tomography
scans based on multiscale texture and shape features. Invest Ophthalmol Vis Sci 2011;
52: 8316-8322
Reference Ris Wihthout Link
- 44
Poplin R,
Varadarajan AV,
Blumer K.
et al.
Prediction of cardiovascular risk factors from retinal fundus photographs via deep
learning. Nat Biomed Eng 2018; 2: 158-164
Reference Ris Wihthout Link
- 45
Korot E,
Pontikos N,
Liu X.
et al.
Predicting sex from retinal fundus photographs using automated deep learning. Sci
Rep 2021; 11: 10286
Reference Ris Wihthout Link
- 46
Chueh KM,
Hsieh YT,
Chen HH.
et al.
Identification of Sex and Age from Macular Optical Coherence Tomography and Feature
Analysis Using Deep Learning. Am J Ophthalmol 2022; 235: 221-228
Reference Ris Wihthout Link
- 47
RetInSight GmbH.
RetInSight. 2022/2023. Im Internet (Stand: 02.08.2024): https://retinsight.com/
Reference Ris Wihthout Link
- 48
RetinAI.
RetinAI Discovery. 2022 Im Internet (Stand: 02.08.2024): https://www.retinai.com/products/discovery
Reference Ris Wihthout Link
- 49
iHealthScreen.
iPredict. 2020 Im Internet (Stand: 02.08.2024): https://ihealthscreen.org/
Reference Ris Wihthout Link
- 50
RetinaLyze System A/S.
RetinaLyze®. 2021. Safe, Fast and Efficient Retinal Investigations with AI and Telemedicine.
Im Internet (Stand: 02.08.2024): https://www.retinalyze.com/
Reference Ris Wihthout Link