RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000094.xml
Z Gastroenterol 2024; 62(10): 874-995
DOI: 10.1055/a-2338-3533
DOI: 10.1055/a-2338-3533
Leitlinie
S3-Leitlinie Exokrines Pankreaskarzinom – Version 3.1
AWMF-Registernummer: 032-010OL – Leitlinie (Langversion)
Schlüsselwörter
Pankreaskarzinom - S3 Leitlinie - duktales Adenokarzinom des Pankreas - evidenzbasierte MedizinPublikationsverlauf
Eingereicht: 03. Juni 2024
Angenommen: 04. Juni 2024
Artikel online veröffentlicht:
10. Oktober 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften – Ständige Kommission L. AWMF-Regelwerk „Leitlinien“. 2020 2 Auflage.. https://www.awmf.org/regelwerk/
- 2 Gesellschaft der epidemiologischen Krebsregister in Deutschland e V, Zentrum für Krebsregisterdaten am Robert K. Krebs in Deutschland 2019/2020. Gesundheitsberichterstattung des Bundes. 2023 8. https://www.krebsdaten.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland/krebs_in_deutschland_2023.pdf?__blob=publicationFile
- 3 Glade MJ. Food, nutrition, and the prevention of cancer: a global perspective American Institute for Cancer Research/World Cancer Research Fund, American Institute for Cancer Research, 1997. Nutrition 1999; 15: 523-526 https://pubmed.ncbi.nlm.nih.gov/10378216/
- 4 (WCRF) WCRF, Research AIfC. Diet, nutrition, physical activity and pancreatic cancer. Revised 2018. https://www.wcrf.org/wp-content/uploads/2021/02/pancreatic-cancer-report.pdf
- 5 Morze J, Danielewicz A, Przybylowicz K. et al. An updated systematic review and meta-analysis on adherence to mediterranean diet and risk of cancer. European Journal of Nutrition 2021; 60: 1561-1586 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7987633/pdf/394_2020_Article_2346.pdf
- 6 Grosso G, Bella F, Godos J. et al. Possible role of diet in cancer: Systematic review and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk. Nutrition Reviews 2017; 75: 405-419 https://pubmed.ncbi.nlm.nih.gov/28969358/
- 7 Lu P, Shu L, Shen S. et al. Dietary Patterns and Pancreatic Cancer Risk: A Meta-Analysis. Nutrients 2017; 9 (01) https://pubmed.ncbi.nlm.nih.gov/28067765/
- 8 Zheng J, Guinter M, Merchant A. et al. Dietary patterns and risk of pancreatic cancer: a systematic review. Nutr Rev 2017; 75 (11) 883-908 https://pubmed.ncbi.nlm.nih.gov/29025004/
- 9 Gao Y, Ma Y, Yu M. et al. Poultry and Fish Intake and Pancreatic Cancer Risk: A Systematic Review and Meta-Analysis. Nutrition & Cancer 2021; 1-13
- 10 Zhao Z, Yin Z, Pu Z. et al. Association Between Consumption of Red and Processed Meat and Pancreatic Cancer Risk: A Systematic Review and Meta-analysis. Clinical Gastroenterology and Hepatology 2017; 15: 486-493.e10 https://www.cghjournal.org/article/S1542-3565(16)30854-0/pdf
- 11 Mossine VV, Mawhinney TP, Giovannucci EL. Dried Fruit Intake and Cancer: A Systematic Review of Observational Studies. Advances in nutrition (Bethesda, Md.) 2020; 11: 237-250 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442373/pdf/nmz085.pdf
- 12 Wu QJ, Wu L, Zheng LQ. et al. Consumption of fruit and vegetables reduces risk of pancreatic cancer: Evidence from epidemiological studies. European Journal of Cancer Prevention 2016; 25: 196-205 https://www.ingentaconnect.com/content/wk/cej/2016/00000025/00000003/art00005;jsessionid=2b1ssg8p6lu1j.x-ic-live-03
- 13 Zhao Z, Yu P, Feng X. et al. No associations between fruit and vegetable consumption and pancreatic cancer risk: A meta-analysis of prospective studies. Oncotarget 2018; 9: 32250-32261 https://www.oncotarget.com/article/23128/pdf/
- 14 Darooghegi Mofrad M, Mozaffari H, Askari MR. et al. Potato Consumption and Risk of Site-Specific Cancers in Adults: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies. Advances in Nutrition 2021; 16: 16 https://academic.oup.com/advances/article-abstract/12/5/1705/6228237?redirectedFrom=fulltext
- 15 Zhang D, Dai C, Zhou L. et al. Meta-analysis of the association between nut consumption and the risks of cancer incidence and cancer-specific mortality. Aging 2020; 12: 10772-10794 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7346045/pdf/aging-12-103292.pdf
- 16 Gaesser GA. Whole grains, refined grains, and cancer risk: A systematic review of meta-analyses of observational studies. Nutrients 2020; 12: 1-23 https://mdpi-res.com/d_attachment/nutrients/nutrients-12-03756/article_deploy/nutrients-12-03756.pdf
- 17 McRae MP. The Benefits of Dietary Fiber Intake on Reducing the Risk of Cancer: An Umbrella Review of Meta-analyses. Journal of Chiropractic Medicine 2018; 17: 90-96 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6112064/pdf/main.pdf
- 18 Llaha F, Gil-Lespinard M, Unal P. et al. Consumption of sweet beverages and cancer risk A systematic review and meta-analysis of observational studies. Nutrients 2021; 13: 1-35 https://mdpi-res.com/d_attachment/nutrients/nutrients-13-00516/article_deploy/nutrients-13-00516-v3.pdf
- 19 Milajerdi A, Larijani B, Esmaillzadeh A. Sweetened Beverages Consumption and Pancreatic Cancer: A Meta-Analysis. Nutrition & Cancer 2019; 71: 375-384
- 20 Ghadirian P, Baillargeon J, Simard A. et al. Food habits and pancreatic cancer: a case-control study of the Francophone community in Montreal, Canada. Cancer Epidemiol Biomarkers Prev 1995; 4: 895-899 https://pubmed.ncbi.nlm.nih.gov/8634663/
- 21 Michaud DS, Liu S, Giovannucci E. et al. Dietary sugar, glycemic load, and pancreatic cancer risk in a prospective study. J Natl Cancer Inst 2002; 94: 1293-300 https://pubmed.ncbi.nlm.nih.gov/12208894/
- 22 Silvera SA, Rohan TE, Jain M. et al. Glycemic index, glycemic load, and pancreatic cancer risk (Canada). Cancer Causes Control 2005; 16: 431-436 https://pubmed.ncbi.nlm.nih.gov/15953985/
- 23 Stolzenberg-Solomon RZ, Pietinen P, Taylor PR. et al. Prospective study of diet and pancreatic cancer in male smokers. Am J Epidemiol 2002; 155: 783-792 https://pubmed.ncbi.nlm.nih.gov/11978580/
- 24 Nothlings U, Wilkens LR, Murphy SP. et al. Meat and fat intake as risk factors for pancreatic cancer: the multiethnic cohort study. J Natl Cancer Inst 2005; 97: 1458-1465 https://pubmed.ncbi.nlm.nih.gov/16204695/
- 25 Lin Y, Tamakoshi A, Hayakawa T. et al. Nutritional factors and risk of pancreatic cancer: a population-based case-control study based on direct interview in Japan. J Gastroenterol 2005; 40: 297-301 https://pubmed.ncbi.nlm.nih.gov/15830290/
- 26 Michaud DS, Giovannucci E, Willett WC. et al. Dietary meat, dairy products, fat, and cholesterol and pancreatic cancer risk in a prospective study. Am J Epidemiol 2003; 157: 1115-1125 https://pubmed.ncbi.nlm.nih.gov/12796048/
- 27 Bueno de Mesquita HB, Maisonneuve P, Runia S. et al. Intake of foods and nutrients and cancer of the exocrine pancreas: a population-based case-control study in The Netherlands. Int J Cancer 1991; 48: 540-549 https://pubmed.ncbi.nlm.nih.gov/1646177/
- 28 Chen J, Jiang W, Shao L. et al. Association between intake of antioxidants and pancreatic cancer risk: a meta-analysis. International journal of food sciences and nutrition 2016; 67: 744-753
- 29 Wang L, Wang J, Liu X. et al. Association between selenium intake and the risk of pancreatic cancer: a meta-analysis of observational studies. Bioscience Reports 2016; 36: 10
- 30 Hua YF, Wang GQ, Jiang W. et al. Vitamin C Intake and Pancreatic Cancer Risk: A Meta-Analysis of Published Case-Control and Cohort Studies. PLoS ONE [Electronic Resource] 2016; 11: e0148816 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747545/pdf/pone.0148816.pdf
- 31 Liu Y, Wang X, Sun X. et al. Vitamin intake and pancreatic cancer risk reduction: A meta-analysis of observational studies. Medicine 2018; 97: e0114 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895396/pdf/medi-97-e0114.pdf
- 32 Huang X, Gao Y, Zhi X. et al. Association between vitamin A, retinol and carotenoid intake and pancreatic cancer risk: Evidence from epidemiologic studies. Scientific Reports 2016; 6: 38936 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5150257/pdf/srep38936.pdf
- 33 Zhang T, Chen H, Qin S. et al. The association between dietary vitamin A intake and pancreatic cancer risk: a meta-analysis of 11 studies. Bioscience Reports 2016; 36: 12 https://pubmed.ncbi.nlm.nih.gov/27756825/
- 34 Fu H, Zeng J, Liu C. et al. Folate Intake and Risk of Pancreatic Cancer: A Systematic Review and Updated Meta-Analysis of Epidemiological Studies. Digestive Diseases and Sciences 2021; 66: 2368-2379 https://link.springer.com/content/pdf/10.1007/s10620-020-06525-7.pdf
- 35 Liu W, Zhou H, Zhu Y. et al. Associations between dietary folate intake and risks of esophageal, gastric and pancreatic cancers: An overall and dose-response meta-analysis. Oncotarget 2017; 8: 86828-86842 https://www.oncotarget.com/article/18775/pdf/
- 36 DGE. 13 DGE-Ernährungsbericht. 2016
- 37 Wei DH, Mao QQ. Vitamin B6, vitamin B12 and methionine and risk of pancreatic cancer: a meta-analysis. Nutrition Journal 2020; 19: 111 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7534168/pdf/12937_2020_Article_628.pdf
- 38 Peng YF, Han MM, Huang R. et al. Vitamin B6 Intake and Pancreatic Carcinoma Risk: A Meta-Analysis. Nutrition and Cancer 2019; 71: 1061-1066
- 39 Mocellin S, Briarava M, Pilati P. Vitamin B6 and cancer risk: A field synopsis and meta-analysis. Journal of the National Cancer Institute 2017; 109 https://pubmed.ncbi.nlm.nih.gov/28376200/
- 40 Zhang X, Huang XZ, Chen WJ. et al. Plasma 25-hydroxyvitamin D levels, vitamin D intake, and pancreatic cancer risk or mortality: a meta-analysis. Oncotarget 2017; 8: 64395-64406 https://www.oncotarget.com/article/18888/pdf/
- 41 Li L, Gai X. The association between dietary zinc intake and risk of pancreatic cancer: a meta-analysis. Bioscience Reports 2017; 37: 30 https://pubmed.ncbi.nlm.nih.gov/28428431/
- 42 Abbasalizad Farhangi M, Vajdi M. Dietary Total Antioxidant Capacity (TAC) Significantly Reduces the Risk of Site-Specific Cancers: An Updated Systematic Review and Meta-Analysis. Nutrition and Cancer 2021; 73: 721-739
- 43 Guo Z, Hong Y, Cheng Y. Dietary inflammatory index and pancreatic cancer risk: a systematic review and dose-response meta-analysis. Public Health Nutrition 2021; 1-9 https://www.cambridge.org/core/journals/public-health-nutrition/article/abs/dietary-inflammatory-index-and-pancreatic-cancer-risk-a-systematic-review-and-doseresponse-metaanalysis/F09C050021A2B14072043B74E84D2FFD
- 44 Xie L, Mo M, Jia HX. et al. Association between dietary nitrate and nitrite intake and sitespecific cancer risk: Evidence from observational studies. Oncotarget 2016; 7: 56915-56932 https://www.oncotarget.com/article/10917/pdf/
- 45 Gao Y, Ma Y, Yu M. et al. Poultry and Fish Intake and Pancreatic Cancer Risk: A Systematic Review and Meta-Analysis. Nutr Cancer 2022; 74 (01) 55-67 https://pubmed.ncbi.nlm.nih.gov/33432844/
- 46 Mills PK, Beeson WL, Abbey DE. et al. Dietary habits and past medical history as related to fatal pancreas cancer risk among Adventists. Cancer 1988; 61: 2578-2585 https://pubmed.ncbi.nlm.nih.gov/3365678/
- 47 Wang Y, Gou Y, Jin W. et al. Association between alcohol intake and the risk of pancreatic cancer: a dose-response meta-analysis of cohort studies. BMC Cancer 2016; 16: 212 https://pubmed.ncbi.nlm.nih.gov/26968702/
- 48 Lugo A, Peveri G, Bosetti C. et al. Strong excess risk of pancreatic cancer for low frequency and duration of cigarette smoking: A comprehensive review and meta-analysis. Eur J Cancer 2018; 104: 117-126 https://pubmed.ncbi.nlm.nih.gov/30347287/
- 49 Gupta S, Gupta R, Sinha D. et al. Relationship between type of smokeless tobacco & risk of cancer: A systematic review. Indian J Med Res 2018; 148 (01) 56-76 https://pubmed.ncbi.nlm.nih.gov/30264755/
- 50 Ordóñez-Mena J, Schöttker B, Mons U. et al. Quantification of the smoking-associated cancer risk with rate advancement periods: meta-analysis of individual participant data from cohorts of the CHANCES consortium. BMC Med 2016; 14: 62 https://pubmed.ncbi.nlm.nih.gov/27044418/
- 51 Lee PN, Thornton AJ, Hamling JS. Epidemiological evidence on environmental tobacco smoke and cancers other than lung or breast. Regulatory Toxicology & Pharmacology 2016; 80: 134-163
- 52 Li TD, Yang HW, Wang P. et al. Coffee consumption and risk of pancreatic cancer: a systematic review and dose-response meta-analysis. International journal of food sciences and nutrition 2019; 70: 519-529
- 53 Ran HQ, Wang JZ, Sun CQ. Coffee consumption and pancreatic cancer risk: An update meta-analysis of cohort studies. Pakistan Journal of Medical Sciences 2016; 32: 253-259 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794517/pdf/PJMS-32-253.pdf
- 54 Alguacil J, Pollan M, Gustavsson P. Occupations with increased risk of pancreatic cancer in the Swedish population. Occup Environ Med 2003; 60: 570-576 https://pubmed.ncbi.nlm.nih.gov/12883017/
- 55 Alguacil J, Porta M, Benavides FG. et al. Occupation and pancreatic cancer in Spain: a case-control study based on job titles PANKRAS II Study Group. Int J Epidemiol 2000; 29: 1004-1013 https://pubmed.ncbi.nlm.nih.gov/11101541/
- 56 Laakkonen A, Kauppinen T, Pukkala E. Cancer risk among Finnish food industry workers. Int J Cancer 2006; 118: 2567-2571 https://pubmed.ncbi.nlm.nih.gov/16380992/
- 57 Fryzek JP, Garabrant DH, Harlow SD. et al. A case-control study of self-reported exposures to pesticides and pancreas cancer in southeastern Michigan. Int J Cancer 1997; 72: 62-67 https://pubmed.ncbi.nlm.nih.gov/9212224/
- 58 Ji BT, Silverman DT, Stewart PA. et al. Occupational exposure to pesticides and pancreatic cancer. Am J Ind Med 2001; 39: 92-99 https://pubmed.ncbi.nlm.nih.gov/11148019/
- 59 Ojajarvi IA, Partanen TJ, Ahlbom A. et al. Occupational exposures and pancreatic cancer: a meta-analysis. Occup Environ Med 2000; 57: 316-324 https://pubmed.ncbi.nlm.nih.gov/10769297/
- 60 Ojajarvi A, Partanen T, Ahlbom A. et al. Risk of pancreatic cancer in workers exposed to chlorinated hydrocarbon solvents and related compounds: a meta-analysis. Am J Epidemiol 2001; 153: 841-850 https://pubmed.ncbi.nlm.nih.gov/11323314/
- 61 Weiderpass E, Vainio H, Kauppinen T. et al. Occupational exposures and gastrointestinal cancers among Finnish women. J Occup Environ Med 2003; 45: 305-315 https://pubmed.ncbi.nlm.nih.gov/12661188/
- 62 Yassi A, Tate RB, Routledge M. Cancer incidence and mortality in workers employed at a transformer manufacturing plant: update to a cohort study. Am J Ind Med 2003; 44: 58-62 https://pubmed.ncbi.nlm.nih.gov/12822136/
- 63 Ji J, Hemminki K. Socioeconomic and occupational risk factors for pancreatic cancer: a cohort study in Sweden. J Occup Environ Med 2006; 48: 283-288 https://pubmed.ncbi.nlm.nih.gov/16531832/
- 64 Dun A, Zhao X, Jin X. et al. Association between night-shift work and cancer risk: Updated systematic review and meta-analysis. Frontiers in Oncology 2020; 10: 1-15 http://www.frontiersin.org/Oncology/about
- 65 Xie F, You Y, Huang J. et al. Association between physical activity and digestive-system cancer: An updated systematic review and meta-analysis. J Sport Health Sci 2021; 10 (01) 4-13 https://pubmed.ncbi.nlm.nih.gov/33010525/
- 66 fSolans M, Chan DSM, Mitrou P. et al. A systematic review and meta-analysis of the 2007 WCRF/AICR score in relation to cancer-related health outcomes. Annals of Oncology 2020; 31: 352-368 https://www.annalsofoncology.org/article/S0923-7534(20)31921-9/pdf
- 67 Luo AJ, Feng RH, Wang XW. et al. Older age at first birth is a risk factor for pancreatic cancer: A meta-analysis. Hepatobiliary and Pancreatic Diseases International 2016; 15: 125-130 http://www.hbpdint.com/
- 68 Prizment A, Anderson K, Hong C. et al. Pancreatic cancer incidence in relation to female reproductive factors: Iowa Women’s Health Study. JOP 2007; 8 (01) 16-27 https://pubmed.ncbi.nlm.nih.gov/17228129/
- 69 Silveira EA, Kliemann N, Noll M. et al. Visceral obesity and incident cancer and cardiovascular disease: An integrative review of the epidemiological evidence. Obesity Reviews 2021; 22
- 70 Hidayat K, Du X, Shi BM. Body fatness at a young age and risks of eight types of cancer: systematic review and meta-analysis of observational studies. Obesity Reviews 2018; 19: 1385-1394
- 71 Seo MS, Yeo J, Hwang IC. et al. Risk of pancreatic cancer in patients with systemic lupus erythematosus: a meta-analysis. Clinical Rheumatology 2019; 38: 3109-3116 10.1007/s10067-019-04660-9.pdf
- 72 Zhang JJ, Jia JP, Shao Q. et al. Diabetes mellitus and risk of pancreatic cancer in China: A meta-analysis based on 26 case-control studies. Primary Care Diabetes 2019; 13: 276-282 https://www.primary-care-diabetes.com/article/S1751-9918(18)30091-3/fulltext
- 73 Aune D, Sen A, Norat T. et al. Primary sclerosing cholangitis and the risk of cancer, cardiovascular disease, and all-cause mortality: a systematic review and meta-analysis of cohort studies. Scientific reports 2021; 11: 10646 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8137938/pdf/41598_2021_Article_90175.pdf
- 74 Fan Y, Hu J, Feng B. et al. Increased risk of pancreatic cancer related to gallstones and cholecystectomy a systematic review and meta-analysis. Pancreas 2016; 45: 503-509 http://journals.lww.com/pancreasjournal
- 75 Trafford AM, Parisi R, Kontopantelis E. et al. Association of Psoriasis with the Risk of Developing or Dying of Cancer: A Systematic Review and Meta-analysis. JAMA Dermatology 2019; 155: 1390-1403 https://jamanetwork.com/journals/jamadermatology/articlepdf/2753127/jamadermatology_trafford_2019_oi_190054.pdf
- 76 Arafa A, Eshak ES, Abdel Rahman TA. et al. Hepatitis C virus infection and risk of pancreatic cancer: A meta-analysis. Cancer Epidemiology 2020; 65: 101691
- 77 Leung CY, Huang HL, Rahman MM. et al. Cancer incidence attributable to tuberculosis in 2015: global, regional, and national estimates. BMC Cancer 2020; 20: 412 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218646/pdf/12885_2020_Article_6891.pdf
- 78 Liu H, Chen YT, Wang R. et al. Helicobacter pylori infection, atrophic gastritis, and pancreatic cancer risk: A meta-analysis of prospective epidemiologic studies. Medicine 2017; 96: e7811 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571714/pdf/medi-96-e7811.pdf
- 79 Liu SS, Ma XF, Zhao J. et al. Association between nonalcoholic fatty liver disease and extrahepatic cancers: a systematic review and meta-analysis. Lipids in Health & Disease 2020; 19: 118 https://lipidworld.biomedcentral.com/track/pdf/10.1186/s12944-020-01288-6.pdf
- 80 Liu X, Zhang ZH, Jiang F. Hepatitis B virus infection increases the risk of pancreatic cancer: a meta-analysis. Scandinavian Journal of Gastroenterology 2021; 56: 252-258
- 81 Maisonneuve P, Amar S, Lowenfels AB. Periodontal disease, edentulism, and pancreatic cancer: a meta-analysis. Annals of oncology: official journal of the European Society for Medical Oncology 2017; 28: 985-995 https://www.annalsofoncology.org/article/S0923-7534(19)32001-0/pdf
- 82 Michaud DS, Fu Z, Shi J. et al. Periodontal disease, tooth loss, and cancer risk. Epidemiologic Reviews 2017; 39: 49-58 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868279/pdf/mxx006.pdf
- 83 Shi J, Leng W, Zhao L. et al. Tooth loss and cancer risk: a dose-response meta analysis of prospective cohort studies. Oncotarget 2018; 9: 15090-15100 https://www.oncotarget.com/article/23850/pdf/
- 84 Wang L, Bierbrier R, Drucker AM. et al. Noncutaneous and Cutaneous Cancer Risk in Patients With Atopic Dermatitis: A Systematic Review and Meta-analysis. JAMA Dermatology 2020; 156: 158-171 https://jamanetwork.com/journals/jamadermatology/articlepdf/2757273/jamadermatology_wang_2019_oi_190064.pdf
- 85 Pang Y, Kartsonaki C, Guo Y. et al. Diabetes, plasma glucose and incidence of pancreatic cancer: A prospective study of 05 million Chinese adults and a meta-analysis of 22 cohort studies. Int J Cancer 2017; 140 (08) 1781-1788 https://pubmed.ncbi.nlm.nih.gov/28063165/
- 86 Wang J, Yang DL, Chen ZZ. et al. Associations of body mass index with cancer incidence among populations, genders, and menopausal status: A systematic review and meta-analysis. Cancer Epidemiology 2016; 42: 1-8 http://www.elsevier.com
- 87 Kaleru T, Vankeshwaram VK, Maheshwary A. et al. Diabetes Mellitus in the Middle-Aged and Elderly Population (>45 Years) and Its Association With Pancreatic Cancer: An Updated Review. Cureus 2020; 12: e8884 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7388804/pdf/cureus-0012-00000008884.pdf
- 88 Sona MF, Myung SK, Park K. et al. Type 1 diabetes mellitus and risk of cancer: A meta-analysis of observational studies. Japanese Journal of Clinical Oncology 2018; 48: 426-433 https://pubmed.ncbi.nlm.nih.gov/29635473/
- 89 Sharma A, Kandlakunta H, Nagpal SJS. et al. Model to Determine Risk of Pancreatic Cancer in Patients With New-Onset Diabetes. Gastroenterology 2018; 155: 730-739.e3 https://pubmed.ncbi.nlm.nih.gov/29775599/
- 90 Chari S, Maitra A, Matrisian L. et al. Early Detection Initiative: A randomized controlled trial of algorithm-based screening in patients with new onset hyperglycemia and diabetes for early detection of pancreatic ductal adenocarcinoma. Contemp Clin Trials 2022; 113: 106659 https://pubmed.ncbi.nlm.nih.gov/34954100/
- 91 Hatami Marbini M, Amiri F, Sajadi Hezaveh Z. Dietary glycemic index, glycemic load, insulin index, insulin load and risk of diabetes-related cancers: A systematic review of cohort studies. Clinical Nutrition ESPEN 2021; 42: 22-31 https://clinicalnutritionespen.com/article/S2405-4577(21)00077-2/fulltext
- 92 Ling S, Brown K, Miksza JK. et al. Risk of cancer incidence and mortality associated with diabetes: A systematic review with trend analysis of 203 cohorts. Nutrition, Metabolism and Cardiovascular Diseases 2021; 31: 14-22 https://www.nmcd-journal.com/article/S0939-4753(20)30410-5/fulltext
- 93 Fang HJ, Shan SB, Zhou YH. et al. Diabetes mellitus and the risk of gastrointestinal cancer in women compared with men: a meta-analysis of cohort studies. BMC Cancer 2018; 18: 422 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5902961/pdf/12885_2018_Article_4351.pdf
- 94 Soltani S, Abdollahi S, Aune D. et al. Body mass index and cancer risk in patients with type 2 diabetes: a dose-response meta-analysis of cohort studies. Scientific reports 2021; 11: 2479 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844243/pdf/41598_2021_Article_81671.pdf
- 95 Pergolini I, Schorn S, Jager C. et al. Diabetes mellitus in intraductal papillary mucinous neoplasms: A systematic review and meta-analysis. Surgery 2021; 169: 411-418 https://www.surgjournal.com/article/S0039-6060(20)30448-7/fulltext
- 96 Wang Y, Yan P, Fu T. et al. The association between gestational diabetes mellitus and cancer in women: A systematic review and meta-analysis of observational studies. Diabetes and Metabolism 2020; 46: 461-471 http://www.elsevier.com/wps/find/journaldescription.cws_home/709654/description#description
- 97 Guo Y, Liu W, Wu J. Helicobacter pylori infection and pancreatic cancer risk: A meta-Analysis. Journal of Cancer Research and Therapeutics 2016; 12: C229-C232 https://www.cancerjournal.net/article.asp?issn=0973-1482;year=2016;volume=12;issue=8;spage=229;epage=232;aulast=Guo
- 98 Zhang Y, Sun C, Song EJ. et al. Is periodontitis a risk indicator for gastrointestinal cancers? A meta-analysis of cohort studies. Journal of Clinical Periodontology 2020; 47: 134-147
- 99 Beyer G, Hoffmeister A, Michl P. et al. S3-Leitlinie Pankreatitis – Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) – September 2021 – AWMF Registernummer 021-003. Z Gastroenterol 2022; 60 (03) 419-521
- 100 Yamada A, Komaki Y, Komaki F. et al. Risk of gastrointestinal cancers in patients with cystic fibrosis: a systematic review and meta-analysis. The Lancet Oncology 2018; 19: 758-767 https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(18)30188-8/fulltext
- 101 Heydari K, Rismantab S, Alizadeh-Navaei R. et al. Risk of secondary malignancies in patients with ovarian cancer: A systematic review and meta-analysis. European Journal of Gynaecological Oncology 2021; 42: 234-243 https://ejgo.imrpress.com/EN/10.31083/j.ejgo.2021.02.2238
- 102 Wang Y, Lan GB, Peng FH. et al. Cancer risks in recipients of renal transplants: a meta-analysis of cohort studies. Oncotarget 2018; 9: 15375-15385 https://www.oncotarget.com/article/23841/pdf/
- 103 Wang G, Xu Z, Zhu J. et al. Decreased Risk in the Pancreatic Cancer With History of Hay Fever: A Meta-Analysis. Frontiers in Public Health 2020; 8: 551490 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574341/pdf/fpubh-08-551490.pdf
- 104 Karim AF, Westenberg LEH, Eurelings LEM. et al. The association between allergic diseases and cancer: a systematic review of the literature. Netherlands Journal of Medicine 2019; 77: 42-66
- 105 Cui Y, Hill AW. Atopy and Specific Cancer Sites: a Review of Epidemiological Studies. Clinical Reviews in Allergy and Immunology 2016; 51: 338-352 https://link.springer.com/content/pdf/10.1007/s12016-016-8559-2.pdf
- 106 Pang Y, Holmes MV, Kartsonaki C. et al. Young adulthood and adulthood adiposity in relation to incidence of pancreatic cancer: a prospective study of 05 million Chinese adults and a meta-analysis. Journal of epidemiology and community health 2017; 71: 1059-1067 https://jech.bmj.com/content/jech/71/11/1059.full.pdf
- 107 Tan J, You Y, Guo F. et al. Association of elevated risk of pancreatic cancer in diabetic patients: A systematic review and meta-analysis. Oncology Letters 2017; 13: 1247-1255 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5403376/pdf/ol-13-03-1247.pdf
- 108 Lowenfels AB, Maisonneuve P, DiMagno EP. et al. Hereditary pancreatitis and the risk of pancreatic cancer International Hereditary Pancreatitis Study Group. J Natl Cancer Inst 1997; 89: 442-446 https://pubmed.ncbi.nlm.nih.gov/9091646/
- 109 Howes N, Lerch MM, Greenhalf W. et al. Clinical and genetic characteristics of hereditary pancreatitis in Europe. Clin Gastroenterol Hepatol 2004; 2: 252-261 https://pubmed.ncbi.nlm.nih.gov/15017610/
- 110 Rosendahl J, Witt H, Szmola R. et al. Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nat Genet 2008; 40: 78-82 https://pubmed.ncbi.nlm.nih.gov/18059268/
- 111 Witt H, Beer S, Rosendahl J. et al. Variants in CPA1 are strongly associated with early onset chronic pancreatitis. Nat Genet 2013; 45: 1216-1220 https://pubmed.ncbi.nlm.nih.gov/23955596/
- 112 Whitcomb DC. Genetic risk factors for pancreatic disorders. Gastroenterology 2013; 144: 1292-1302 https://pubmed.ncbi.nlm.nih.gov/23622139/
- 113 Tamura K, Yu J, Hata T. et al. Mutations in the pancreatic secretory enzymes CPA1 and CPB1 are associated with pancreatic cancer. Proc Natl Acad Sci U S A 2018; 115: 4767-4772 https://pubmed.ncbi.nlm.nih.gov/29669919/
- 114 National Institute for H, Care E. Pancreatic cancer in adults: diagnosis and management NICE Guideline NG85. 2018 https://www.nice.org.uk/guidance/ng85
- 115 Raimondi S, Lowenfels A, Morselli-Labate A. et al. Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection. Best Pract Res Clin Gastroenterol 2010; 24 (03) 349-358 https://pubmed.ncbi.nlm.nih.gov/20510834/
- 116 Klein AP, Brune KA, Petersen GM. et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res 2004; 64: 2634-2638 https://pubmed.ncbi.nlm.nih.gov/15059921/
- 117 Bartsch DK, Slater EP, Carrato A. et al. Refinement of screening for familial pancreatic cancer. Gut 2016; 65: 1314-1321 https://www.ncbi.nlm.nih.gov/pubmed/27222532
- 118 Goggins M, Overbeek KA, Brand R. et al. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut 2020; 69: 7-17 https://www.ncbi.nlm.nih.gov/pubmed/31672839
- 119 McFaul CD, Greenhalf W, Earl J. et al. Anticipation in familial pancreatic cancer. Gut 2006; 55: 252-258 https://pubmed.ncbi.nlm.nih.gov/15972300/
- 120 Grover S, Syngal S. Hereditary pancreatic cancer. Gastroenterology 2010; 139 (04) 1076-1080, 1080.e1-2 https://pubmed.ncbi.nlm.nih.gov/20727885/
- 121 Brune K, Lau B, Palmisano E. et al. Importance of age of onset in pancreatic cancer kindreds. J Natl Cancer Inst 2010; 102 (02) 119-126 https://pubmed.ncbi.nlm.nih.gov/20068195/
- 122 Stoffel EM, McKernin SE, Brand R. et al. Evaluating susceptibility to pancreatic cancer: ASCO provisional clinical opinion. Journal of Clinical Oncology 2019; 37: 153-164 https://pubmed.ncbi.nlm.nih.gov/30589608/
- 123 Park W, Chen J, Chou J. et al. Genomic Methods Identify Homologous Recombination Deficiency in Pancreas Adenocarcinoma and Optimize Treatment Selection. Clinical Cancer Research 2020; 26 https://pubmed.ncbi.nlm.nih.gov/32444418/
- 124 Jahn A, Rump A, Widmann T. et al. Comprehensive cancer predisposition testing within the prospective MASTER trial identifies hereditary cancer patients and supports treatment decisions for rare cancers. Ann Oncol 2022; 33 (11) 1186-1199 https://pubmed.ncbi.nlm.nih.gov/35988656/
- 125 Daly M, Pal T, Berry M. et al. Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 22021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19 (01) 77-102 https://pubmed.ncbi.nlm.nih.gov/33406487/
- 126 Roberts NJ, Norris AL, Petersen GM. et al. Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discov 2016; 6: 166-175 https://pubmed.ncbi.nlm.nih.gov/26658419/
- 127 Chaffee KG, Oberg AL, McWilliams RR. et al. Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. Genetics in Medicine 2018; 20: 119-127 https://pubmed.ncbi.nlm.nih.gov/28726808/
- 128 Shindo K, Yu J, Suenaga M. et al. Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. Journal of Clinical Oncology 2017; 35: 3382-3390 https://pubmed.ncbi.nlm.nih.gov/28767289/
- 129 Lowery MA, Wong W, Jordan EJ. et al. Prospective evaluation of germline alterations in patients with exocrine pancreatic neoplasms. Journal of the National Cancer Institute 2018; 110: djy024 https://pubmed.ncbi.nlm.nih.gov/29506128/
- 130 Wood LD, Yurgelun MB, Goggins MG. Genetics of Familial and Sporadic Pancreatic Cancer. Gastroenterology 2019; 156: 2041-2055 https://pubmed.ncbi.nlm.nih.gov/30660730/
- 131 Yurgelun MB, Chittenden AB, Morales-Oyarvide V. et al. Germline cancer susceptibility gene variants, somatic second hits, and survival outcomes in patients with resected pancreatic cancer. Genetics in Medicine 2019; 21: 213-223 https://pubmed.ncbi.nlm.nih.gov/29961768/
- 132 Bannon SA, Montiel MF, Goldstein JB. et al. High Prevalence of Hereditary Cancer Syndromes and Outcomes in Adults with Early-Onset Pancreatic Cancer. Cancer Prev Res (Phila) 2018; 11: 679-686 https://www.ncbi.nlm.nih.gov/pubmed/30274973
- 133 Lucas AL, Frado LE, Hwang C. et al. BRCA1 and BRCA2 germline mutations are frequently demonstrated in both high-risk pancreatic cancer screening and pancreatic cancer cohorts. Cancer 2014; 120: 1960-1967 https://pubmed.ncbi.nlm.nih.gov/24737347/
- 134 Abe T, Blackford A, Tamura K. et al. Deleterious Germline Mutations Are a Risk Factor for Neoplastic Progression Among High-Risk Individuals Undergoing Pancreatic Surveillance. J Clin Oncol 2019; 37 (13) 1070-1080 https://pubmed.ncbi.nlm.nih.gov/30883245/
- 135 Konings ICAW, Harinck F, Poley JW. et al. Prevalence and Progression of Pancreatic Cystic Precursor Lesions Differ Between Groups at High Risk of Developing Pancreatic Cancer. Pancreas 2017; 46: 28-34 https://pubmed.ncbi.nlm.nih.gov/27846136/
- 136 Bjelakovic G, Nikolova D, Simonetti RG. et al. Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet 2004; 364: 1219-1228 https://pubmed.ncbi.nlm.nih.gov/15464182/
- 137 Coogan PF, Rosenberg L, Palmer JR. et al. Nonsteroidal anti-inflammatory drugs and risk of digestive cancers at sites other than the large bowel. Cancer Epidemiol Biomarkers Prev 2000; 9: 119-123 https://pubmed.ncbi.nlm.nih.gov/10667472/
- 138 Harris RE, Beebe-Donk J, Doss H. et al. Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention: a critical review of non-selective COX-2 blockade (review). Oncol Rep 2005; 13: 559-583 https://pubmed.ncbi.nlm.nih.gov/15756426/
- 139 Jacobs EJ, Connell CJ, Rodriguez C. et al. Aspirin use and pancreatic cancer mortality in a large United States cohort. J Natl Cancer Inst 2004; 96: 524-528 https://pubmed.ncbi.nlm.nih.gov/15069114/
- 140 Hart PA, Chari ST. Is Screening for Pancreatic Cancer in High-Risk Individuals One Step Closer or a Fool’s Errand?. Clin Gastroenterol Hepatol 2019; 17: 36-38 https://www.ncbi.nlm.nih.gov/pubmed/30268560
- 141 Homma T, Tsuchiya R. The study of the mass screening of persons without symptoms and of the screening of outpatients with gastrointestinal complaints or icterus for pancreatic cancer in Japan, using CA19-9 and elastase-1 or ultrasonography. Int J Pancreatol 1991; 9: 119-124 https://pubmed.ncbi.nlm.nih.gov/1744437/
- 142 Kim JE, Lee KT, Lee JK. et al. Clinical usefulness of carbohydrate antigen 19-9 as a screening test for pancreatic cancer in an asymptomatic population. J Gastroenterol Hepatol 2004; 19: 182-186 https://pubmed.ncbi.nlm.nih.gov/14731128/
- 143 Owens DK, Davidson KW, Krist AH. et al. Screening for Pancreatic Cancer: US Preventive Services Task Force Reaffirmation Recommendation Statement. Jama 2019; 322: 438-444 https://pubmed.ncbi.nlm.nih.gov/31386141/
- 144 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69: 7-34 https://pubmed.ncbi.nlm.nih.gov/30620402/
- 145 Overbeek KA, Goggins MG, Dbouk M. et al. Timeline of Development of Pancreatic Cancer and Implications for Successful Early Detection in High-Risk Individuals. Gastroenterology 2022; 162: 772-785.e4
- 146 Bartsch D, Matthäi E, Mintziras I. et al. The German National Case Collection for Familial Pancreatic Carcinoma (FaPaCa) – Knowledge Gained in 20 Years. Dtsch Arztebl Int 2021; 118 https://pubmed.ncbi.nlm.nih.gov/33531114/
- 147 Vasen H, Ibrahim I, Ponce C. et al. Benefit of Surveillance for Pancreatic Cancer in High-Risk Individuals: Outcome of Long-Term Prospective Follow-Up Studies From Three European Expert Centers. J Clin Oncol 2016; 34 (17) 2010-2019 https://pubmed.ncbi.nlm.nih.gov/27114589/
- 148 Antwi S, Fagan S, Chaffee K. et al. Risk of Different Cancers Among First-degree Relatives of Pancreatic Cancer Patients: Influence of Probands’ Susceptibility Gene Mutation Status. J Natl Cancer Inst 2019; 111 (03) 264-271 https://pubmed.ncbi.nlm.nih.gov/29982661/
- 149 Overbeek K, Levink I, Koopmann B. et al. Long-term yield of pancreatic cancer surveillance in high-risk individuals. Gut 2022; 71 (06) 1152-1160 https://pubmed.ncbi.nlm.nih.gov/33820756/
- 150 Canto MI, Almario JA, Schulick RD. et al. Risk of Neoplastic Progression in Individuals at High Risk for Pancreatic Cancer Undergoing Long-term Surveillance. Gastroenterology 2018; 155: 740 https://pubmed.ncbi.nlm.nih.gov/29803839/
- 151 Rebours V, Boutron-Ruault M, Schnee M. et al. The natural history of hereditary pancreatitis: a national series. Gut 2009; 58 (01) 97-103 https://pubmed.ncbi.nlm.nih.gov/18755888/
- 152 Canto MI, Goggins M, Yeo CJ. et al. Screening for pancreatic neoplasia in high-risk individuals: an EUS-based approach. Clin Gastroenterol Hepatol 2004; 2: 606-621 https://pubmed.ncbi.nlm.nih.gov/15224285/
- 153 Canto MI, Goggins M, Hruban RH. et al. Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol 2006; 4: 766-781 https://pubmed.ncbi.nlm.nih.gov/16682259/
- 154 Brentnall TA. Management strategies for patients with hereditary pancreatic cancer. Curr Treat Options Oncol 2005; 6: 437-445 https://www.ncbi.nlm.nih.gov/pubmed/16107246
- 155 Kimmey MB, Bronner MP, Byrd DR. et al. Screening and surveillance for hereditary pancreatic cancer. Gastrointest Endosc 2002; 56: S82-S86 https://pubmed.ncbi.nlm.nih.gov/12297755/
- 156 Canto M, Hruban R, Fishman E. et al. Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology 2012; 142 (04) 796-804 https://pubmed.ncbi.nlm.nih.gov/22245846/
- 157 Falconi M, Eriksson B, Kaltsas G. et al. ENETS Consensus Guidelines Update for the Management of Patients with Functional Pancreatic Neuroendocrine Tumors and Non-Functional Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2016; 103 (02) 153-171 https://pubmed.ncbi.nlm.nih.gov/26742109/
- 158 Canto MI, Harinck F, Hruban RH. et al. International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut 2013; 62: 339-347 https://www.ncbi.nlm.nih.gov/pubmed/23135763
- 159 Corral JE, Mareth KF, Riegert-Johnson DL. et al. Diagnostic Yield From Screening Asymptomatic Individuals at High Risk for Pancreatic Cancer: A Meta-analysis of Cohort Studies. Clinical Gastroenterology and Hepatology 2019; 17: 41-53
- 160 Lowenfels A, Maisonneuve P, Whitcomb D. et al. Cigarette smoking as a risk factor for pancreatic cancer in patients with hereditary pancreatitis. JAMA 2001; 286 (02) 169-170 https://pubmed.ncbi.nlm.nih.gov/11448279/
- 161 Bjornsson E, Ismael S, Nejdet S. et al. Severe jaundice in Sweden in the new millennium: causes, investigations, treatment and prognosis. Scand J Gastroenterol 2003; 38: 86-94 https://pubmed.ncbi.nlm.nih.gov/12608470/
- 162 Reisman Y, Gips CH, Lavelle SM. et al. Clinical presentation of (subclinical) jaundice--the Euricterus project in The Netherlands United Dutch Hospitals and Euricterus Project Management Group. Hepatogastroenterology 1996; 43: 1190-1195 https://pubmed.ncbi.nlm.nih.gov/8908550/
- 163 Watanabe I, Sasaki S, Konishi M. et al. Onset symptoms and tumor locations as prognostic factors of pancreatic cancer. Pancreas 2004; 28: 160-165 https://pubmed.ncbi.nlm.nih.gov/15028948/
- 164 Mujica VR, Barkin JS, Go VL. Acute pancreatitis secondary to pancreatic carcinoma Study Group Participants. Pancreas 2000; 21: 329-332 https://pubmed.ncbi.nlm.nih.gov/11075985/
- 165 Balthazar EJ. Pancreatitis associated with pancreatic carcinoma Preoperative diagnosis: role of CT imaging in detection and evaluation. Pancreatology 2005; 5: 330-344 https://pubmed.ncbi.nlm.nih.gov/16015017/
- 166 Adamek HE, Albert J, Breer H. et al. Pancreatic cancer detection with magnetic resonance cholangiopancreatography and endoscopic retrograde cholangiopancreatography: a prospective controlled study. Lancet 2000; 356: 190-193 https://pubmed.ncbi.nlm.nih.gov/10963196/
- 167 Hanninen EL, Ricke J, Amthauer H. et al. Magnetic resonance cholangiopancreatography: image quality, ductal morphology, and value of additional T2- and T1-weighted sequences for the assessment of suspected pancreatic cancer. Acta Radiol 2005; 46: 117-125 https://pubmed.ncbi.nlm.nih.gov/15902884/
- 168 Nazli O, Bozdag AD, Tansug T. et al. The diagnostic importance of CEA and CA 19-9 for the early diagnosis of pancreatic carcinoma. Hepatogastroenterology 2000; 47: 1750-1752 https://pubmed.ncbi.nlm.nih.gov/11149048/
- 169 Ritts RE, Nagorney DM, Jacobsen DJ. et al. Comparison of preoperative serum CA19-9 levels with results of diagnostic imaging modalities in patients undergoing laparotomy for suspected pancreatic or gallbladder disease. Pancreas 1994; 9: 707-716 https://pubmed.ncbi.nlm.nih.gov/7846013/
- 170 Tessler DA, Catanzaro A, Velanovich V. et al. Predictors of cancer in patients with suspected pancreatic malignancy without a tissue diagnosis. Am J Surg 2006; 191: 191-197 https://pubmed.ncbi.nlm.nih.gov/16442944/
- 171 Forsmark CE, Lambiase L, Vogel SB. Diagnosis of pancreatic cancer and prediction of unresectability using the tumor-associated antigen CA19-9. Pancreas 1994; 9: 731-734 https://pubmed.ncbi.nlm.nih.gov/7846016/
- 172 Varadarajulu S, Wallace MB. Applications of endoscopic ultrasonography in pancreatic cancer. Cancer Control 2004; 11: 15-22 https://pubmed.ncbi.nlm.nih.gov/14749619/
- 173 Agarwal B, Abu-Hamda E, Molke KL. et al. Endoscopic ultrasound-guided fine needle aspiration and multidetector spiral CT in the diagnosis of pancreatic cancer. Am J Gastroenterol 2004; 99: 844-850 https://pubmed.ncbi.nlm.nih.gov/15128348/
- 174 Klapman JB, Chang KJ, Lee JG. et al. Negative predictive value of endoscopic ultrasound in a large series of patients with a clinical suspicion of pancreatic cancer. Am J Gastroenterol 2005; 100: 2658-2661 https://pubmed.ncbi.nlm.nih.gov/16393216/
- 175 David O, Green L, Reddy V. et al. Pancreatic masses: a multi-institutional study of 364 fine-needle aspiration biopsies with histopathologic correlation. Diagn Cytopathol 1998; 19: 423-427 https://www.ncbi.nlm.nih.gov/pubmed/9839131
- 176 Bipat S, Phoa SS, van Delden OM. et al. Ultrasonography, computed tomography and magnetic resonance imaging for diagnosis and determining resectability of pancreatic adenocarcinoma: a meta-analysis. J Comput Assist Tomogr 2005; 29: 438-445 https://www.ncbi.nlm.nih.gov/pubmed/16012297
- 177 James PD, Meng ZW, Zhang M. et al. The incremental benefit of EUS for identifying unresectable disease among adults with pancreatic adenocarcinoma: A meta-analysis. PLoS One 2017; 12: e0173687 https://pubmed.ncbi.nlm.nih.gov/28319148/
- 178 Krishna S, Rao B, Ugbarugba E. et al. Diagnostic performance of endoscopic ultrasound for detection of pancreatic malignancy following an indeterminate multidetector CT scan: a systemic review and meta-analysis. Surgical Endoscopy 2017; 31: 4558-4567 https://pubmed.ncbi.nlm.nih.gov/28378082/
- 179 D’Onofrio M, Barbi E, Dietrich CF. et al. Pancreatic multicenter ultrasound study (PAMUS). Eur J Radiol 2012; 81: 630-638 https://www.ncbi.nlm.nih.gov/pubmed/21466935
- 180 D’Onofrio M, de Sio I, Mirk P. et al. SIUMB recommendations for focal pancreatic lesions. J Ultrasound 2020; 23: 599-606 https://www.ncbi.nlm.nih.gov/pubmed/32886345
- 181 Sohal DPS, Kennedy EB, Khorana A. et al. Metastatic Pancreatic Cancer: ASCO Clinical Practice Guideline Update. Journal of Clinical Oncology 2018; 36: 2545-2556 https://pubmed.ncbi.nlm.nih.gov/29791286/
- 182 Sohal DP, Kennedy EB, Cinar P. et al. Metastatic Pancreatic Cancer: ASCO Guideline Update. Journal of Clinical Oncology 2020; 38: 3217-3230
- 183 Chew C, O’Dwyer PJ. The value of liver magnetic resonance imaging in patients with findings of resectable pancreatic cancer on computed tomography. Singapore Med J 2016; 57: 334-338 https://www.ncbi.nlm.nih.gov/pubmed/27353741
- 184 Ito T, Sugiura T, Okamura Y. et al. The diagnostic advantage of EOB-MR imaging over CT in the detection of liver metastasis in patients with potentially resectable pancreatic cancer. Pancreatology 2017; 17: 451-456 https://pubmed.ncbi.nlm.nih.gov/28298257/
- 185 Jeon SK, Lee JM, Joo I. et al. Magnetic resonance with diffusion-weighted imaging improves assessment of focal liver lesions in patients with potentially resectable pancreatic cancer on CT. European Radiology 2018; 28: 3484-3493 https://pubmed.ncbi.nlm.nih.gov/29352379/
- 186 Kim HJ, Park MS, Lee JY. et al. Incremental Role of Pancreatic Magnetic Resonance Imaging after Staging Computed Tomography to Evaluate Patients with Pancreatic Ductal Adenocarcinoma. Cancer Res Treat 2019; 51: 24-33 https://pubmed.ncbi.nlm.nih.gov/29397657/
- 187 Kim HW, Lee JC, Paik KH. et al. Adjunctive role of preoperative liver magnetic resonance imaging for potentially resectable pancreatic cancer. Surgery (United States) 2017; 161: 1579-1587 https://pubmed.ncbi.nlm.nih.gov/28237643/
- 188 Wang L, Dong P, Wang WG. et al. Positron emission tomography modalities prevent futile radical resection of pancreatic cancer: A meta-analysis. International Journal of Surgery 2017; 46: 119-125 https://pubmed.ncbi.nlm.nih.gov/28890410/
- 189 Ghaneh P, Hanson R, Titman A. et al. PET-PANC: multicentre prospective diagnostic accuracy and health economic analysis study of the impact of combined modality 18fluorine-2-fluoro-2-deoxy-d-glucose positron emission tomography with computed tomography scanning in the diagnosis and management of pancreatic cancer. Health Technol Assess 2018; 22: 1-114 https://www.ncbi.nlm.nih.gov/pubmed/29402376
- 190 Yoneyama T, Tateishi U, Endo I. et al. Staging accuracy of pancreatic cancer: comparison between non-contrast-enhanced and contrast-enhanced PET/CT. European Journal of Radiology 2014; 83: 1734-1739 https://pubmed.ncbi.nlm.nih.gov/25043494/
- 191 Santhosh S, Mittal BR, Bhasin DK. et al. Fluorodeoxyglucose-positron emission tomography/computed tomography performs better than contrast-enhanced computed tomography for metastasis evaluation in the initial staging of pancreatic adenocarcinoma. Annals of Nuclear Medicine 2017; 31: 575-581 https://pubmed.ncbi.nlm.nih.gov/28689356/
- 192 Rijkers AP, Valkema R, Duivenvoorden HJ. et al. Usefulness of F-18-fluorodeoxyglucose positron emission tomography to confirm suspected pancreatic cancer: A meta-analysis. European Journal of Surgical Oncology 2014; 40: 794-804 https://pubmed.ncbi.nlm.nih.gov/24755095/
- 193 Kim MJ, Lee KH, Lee KT. et al. The value of positron emission tomography/computed tomography for evaluating metastatic disease in patients with pancreatic cancer. Pancreas 2012; 41: 897-903 https://pubmed.ncbi.nlm.nih.gov/22699202/
- 194 Kim HR, Seo M, Nah YW. et al. Clinical impact of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in patients with resectable pancreatic cancer: Diagnosing lymph node metastasis and predicting survival. Nuclear Medicine Communications 2018; 39: 691-698 https://pubmed.ncbi.nlm.nih.gov/29893751/
- 195 Hillner BE, Siegel BA, Shields AF. et al. Relationship between cancer type and impact of PET and PET/CT on intended management: Findings of the national oncologic PET registry. Journal of Nuclear Medicine 2008; 49: 1928-1935 https://pubmed.ncbi.nlm.nih.gov/18997054/
- 196 Einersen P, Epelboym I, Winner MD. et al. Positron emission tomography (PET) has limited utility in the staging of pancreatic adenocarcinoma. Journal of gastrointestinal surgery: official journal of the Society for Surgery of the Alimentary Tract 2014; 18: 1441-1444 https://pubmed.ncbi.nlm.nih.gov/24928186/
- 197 Buchs NC, Buhler L, Bucher P. et al. Value of contrast-enhanced 18F-fluorodeoxyglucose positron emission tomography/computed tomography in detection and presurgical assessment of pancreatic cancer: a prospective study. J Gastroenterol Hepatol 2011; 26: 657-662 https://www.ncbi.nlm.nih.gov/pubmed/21155879
- 198 Toft J, Hadden WJ, Laurence JM. et al. Imaging modalities in the diagnosis of pancreatic adenocarcinoma: A systematic review and meta-analysis of sensitivity, specificity and diagnostic accuracy. Eur J Radiol 2017; 92: 17-23 https://pubmed.ncbi.nlm.nih.gov/28624015/
- 199 Schachter PP, Avni Y, Shimonov M. et al. The impact of laparoscopy and laparoscopic ultrasonography on the management of pancreatic cancer. Arch Surg 2000; 135: 1303-1307 https://pubmed.ncbi.nlm.nih.gov/11074885/
- 200 Vollmer CM, Drebin JA, Middleton WD. et al. Utility of staging laparoscopy in subsets of peripancreatic and biliary malignancies. Ann Surg 2002; 235: 1-7 https://pubmed.ncbi.nlm.nih.gov/11753036/
- 201 European Study Group on Cystic Tumours of the P. European evidence-based guidelines on pancreatic cystic neoplasms. Gut 2018; 67: 789-804 https://gut.bmj.com/content/67/5/789.long
- 202 van der Waaij LA, van Dullemen HM, Porte RJ. Cyst fluid analysis in the differential diagnosis of pancreatic cystic lesions: a pooled analysis. Gastrointest Endosc 2005; 62: 383-389 https://pubmed.ncbi.nlm.nih.gov/16111956/
- 203 Gillis A, Cipollone I, Cousins G. et al. Does EUS-FNA molecular analysis carry additional value when compared to cytology in the diagnosis of pancreatic cystic neoplasm? A systematic review. HPB (Oxford) 2015; 17: 377-386 https://www.ncbi.nlm.nih.gov/pubmed/25428782
- 204 Ngamruengphong S, Lennon AM. Analysis of Pancreatic Cyst Fluid. Surg Pathol Clin 2016; 9: 677-684 https://pubmed.ncbi.nlm.nih.gov/27926366/
- 205 Tanaka M, Fernández-Del Castillo C, Kamisawa T. et al. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology 2017; 17: 738-753 https://pubmed.ncbi.nlm.nih.gov/28735806/
- 206 Marchegiani G, Andrianello S, Borin A. et al. Systematic review, meta-analysis, and a high-volume center experience supporting the new role of mural nodules proposed by the updated 2017 international guidelines on IPMN of the pancreas. Surgery 2018; 163: 1272-1279 https://pubmed.ncbi.nlm.nih.gov/29454468/
- 207 Han Y, Lee H, Kang JS. et al. Progression of Pancreatic Branch Duct Intraductal Papillary Mucinous Neoplasm Associates With Cyst Size. Gastroenterology 2018; 154: 576-584 https://www.ncbi.nlm.nih.gov/pubmed/29074452
- 208 Doi R, Imamura M, Hosotani R. et al. Surgery versus radiochemotherapy for resectable locally invasive pancreatic cancer: final results of a randomized multi-institutional trial. Surg Today 2008; 38: 1021-1028 https://pubmed.ncbi.nlm.nih.gov/18958561/
- 209 Ahola R, Siiki A, Vasama K. et al. Effect of centralization on long-term survival after resection of pancreatic ductal adenocarcinoma. Br J Surg 2017; 104: 1532-1538 https://www.ncbi.nlm.nih.gov/pubmed/28517236
- 210 Alsfasser G, Leicht H, Gunster C. et al. Volume-outcome relationship in pancreatic surgery. Br J Surg 2016; 103: 136-143 https://www.ncbi.nlm.nih.gov/pubmed/26505976
- 211 Amini N, Spolverato G, Kim Y. et al. Trends in Hospital Volume and Failure to Rescue for Pancreatic Surgery. J Gastrointest Surg 2015; 19: 1581-1592 https://www.ncbi.nlm.nih.gov/pubmed/25794484
- 212 Lidsky ME, Sun Z, Nussbaum DP. et al. Going the Extra Mile: Improved Survival for Pancreatic Cancer Patients Traveling to High-volume Centers. Ann Surg 2017; 266: 333-338 https://www.ncbi.nlm.nih.gov/pubmed/27429020
- 213 Stella M, Bissolati M, Gentile D. et al. Impact of surgical experience on management and outcome of pancreatic surgery performed in high- and low-volume centers. Updates Surg 2017; 69: 351-358 https://www.ncbi.nlm.nih.gov/pubmed/28215039
- 214 van der Geest LG, van Rijssen LB, Molenaar IQ. et al. Volume-outcome relationships in pancreatoduodenectomy for cancer. HPB (Oxford) 2016; 18: 317-324 https://www.ncbi.nlm.nih.gov/pubmed/27037200
- 215 Kutlu OC, Lee JE, Katz MH. et al. Open Pancreaticoduodenectomy Case Volume Predicts Outcome of Laparoscopic Approach: A Population-based Analysis. Ann Surg 2018; 267: 552-560 https://pubmed.ncbi.nlm.nih.gov/28045744/
- 216 Guller U, Warschkow R, Ackermann CJ. et al. Lower hospital volume is associated with higher mortality after oesophageal, gastric, pancreatic and rectal cancer resection. Swiss Med Wkly 2017; 147: w14473 https://www.ncbi.nlm.nih.gov/pubmed/28750418
- 217 Gooiker GA, Lemmens VE, Besselink MG. et al. Impact of centralization of pancreatic cancer surgery on resection rates and survival. Br J Surg 2014; 101: 1000-1005 https://www.ncbi.nlm.nih.gov/pubmed/24844590
- 218 Derogar M, Blomberg J, Sadr-Azodi O. Hospital teaching status and volume related to mortality after pancreatic cancer surgery in a national cohort. Br J Surg 2015; 102: 548-557 https://www.ncbi.nlm.nih.gov/pubmed/25711855
- 219 Coupland VH, Konfortion J, Jack RH. et al. Resection rate, hospital procedure volume and survival in pancreatic cancer patients in England: Population-based study, 2005-2009. Eur J Surg Oncol 2016; 42: 190-196 https://www.ncbi.nlm.nih.gov/pubmed/26705143
- 220 Brahmbhatt B, Bhurwal A, Lukens FJ. et al. Pancreatic Surgery in the Older Population: A Single Institution’s Experience over Two Decades. Curr Gerontol Geriatr Res 2016; 2016: 8052175 https://www.ncbi.nlm.nih.gov/pubmed/28018428
- 221 Bliss LA, Yang CJ, Chau Z. et al. Patient selection and the volume effect in pancreatic surgery: unequal benefits?. HPB (Oxford) 2014; 16: 899-906 https://www.ncbi.nlm.nih.gov/pubmed/24905343
- 222 Bateni SB, Olson JL, Hoch JS. et al. Drivers of Cost for Pancreatic Surgery: It’s Not About Hospital Volume. Ann Surg Oncol 2018; 25: 3804-3811 https://www.ncbi.nlm.nih.gov/pubmed/30218244
- 223 Balzano G, Capretti G, Callea G. et al. Overuse of surgery in patients with pancreatic cancer A nationwide analysis in Italy. HPB (Oxford) 2016; 18: 470-478 https://www.ncbi.nlm.nih.gov/pubmed/27154812
- 224 Birkmeyer JD, Siewers AE, Finlayson EV. et al. Hospital volume and surgical mortality in the United States. N Engl J Med 2002; 346: 1128-1137 https://www.ncbi.nlm.nih.gov/pubmed/11948273
- 225 Ansari D, Williamsson C, Tingstedt B. et al. Pancreaticoduodenectomy-the transition from a low- to a high-volume center. Scandinavian Journal of Gastroenterology 2014; 49: 481-484 https://pubmed.ncbi.nlm.nih.gov/24255988/
- 226 Healy MA, Krell RW, Abdelsattar ZM. et al. Pancreatic Resection Results in a Statewide Surgical Collaborative. Annals of Surgical Oncology 2015; 22: 2468-2474 https://pubmed.ncbi.nlm.nih.gov/25820999/
- 227 Mehta HB, Parmar AD, Adhikari D. et al. Relative impact of surgeon and hospital volume on operative mortality and complications following pancreatic resection in Medicare patients. Journal of Surgical Research 2016; 204: 326-334 https://pubmed.ncbi.nlm.nih.gov/27565068/
- 228 Capretti G, Balzano G, Gianotti L. et al. Management and Outcomes of Pancreatic Resections Performed in High-Volume Referral and Low-Volume Community Hospitals Lead by Surgeons Who Shared the Same Mentor: The Importance of Training. Dig Surg 2018; 35: 42-48 https://www.ncbi.nlm.nih.gov/pubmed/28278493
- 229 Nimptsch U, Mansky T. Hospital volume and mortality for 25 types of inpatient treatment in German hospitals: Observational study using complete national data from 2009 to 2014. BMJ Open 2017; 7: e016184 https://pubmed.ncbi.nlm.nih.gov/28882913/
- 230 Krautz C, Nimptsch U, Weber GF. et al. Effect of Hospital Volume on In-hospital Morbidity and Mortality Following Pancreatic Surgery in Germany. Annals of surgery 2018; 267: 411-417 https://pubmed.ncbi.nlm.nih.gov/28379871/
- 231 Mamidanna R, Ni Z, Anderson O. et al. Surgeon volume and cancer esophagectomy, gastrectomy, and pancreatectomy: A populatio n-based study in England. Annals of surgery 2016; 263: 727-732 https://pubmed.ncbi.nlm.nih.gov/26501701/
- 232 Miura F, Yamamoto M, Gotoh M. et al. Validation of the board certification system for expert surgeons (hepato-biliary-pancreatic field) using the data of the National Clinical Database of Japan: part 2 – Pancreatoduodenectomy. Journal of Hepato-Biliary-Pancreatic Sciences 2016; 23: 353-363 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed17&NEWS=N&AN=610915010
- 233 van der Geest LG, Besselink MG, Busch OR. et al. Elderly Patients Strongly Benefit from Centralization of Pancreatic Cancer Surgery: A Population-Based Study. Ann Surg Oncol 2016; 23: 2002-2009 https://www.ncbi.nlm.nih.gov/pubmed/26795767
- 234 Schwarz RE. Technical considerations to maintain a low frequency of postoperative biliary stent-associated infections. J Hepatobiliary Pancreat Surg 2002; 9: 93-97 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12021902
- 235 Gerke H, White R, Byrne MF. et al. Complications of pancreaticoduodenectomy after neoadjuvant chemoradiation in patients with and without preoperative biliary drainage. Dig Liver Dis 2004; 36: 412-418 https://www.ncbi.nlm.nih.gov/pubmed/15248382
- 236 Jagannath P, Dhir V, Shrikhande S. et al. Effect of preoperative biliary stenting on immediate outcome after pancreaticoduodenectomy. Br J Surg 2005; 92: 356-361 https://pubmed.ncbi.nlm.nih.gov/15672425/
- 237 Martignoni ME, Wagner M, Krahenbuhl L. et al. Effect of preoperative biliary drainage on surgical outcome after pancreatoduodenectomy. Am J Surg 2001; 181: 52-59 https://pubmed.ncbi.nlm.nih.gov/11248177/
- 238 Sohn TA, Yeo CJ, Cameron JL. et al. Do preoperative biliary stents increase postpancreaticoduodenectomy complications?. J Gastrointest Surg 2000; 4: 258-267 https://pubmed.ncbi.nlm.nih.gov/10769088/
- 239 van der Gaag NA, Rauws EA, van Eijck CH. et al. Preoperative biliary drainage for cancer of the head of the pancreas. N Engl J Med 2010; 362: 129-137 http://www.ncbi.nlm.nih.gov/pubmed/20071702
- 240 Allen V, Gurusamy K, Takwoingi Y. et al. Diagnostic accuracy of laparoscopy following computed tomography (CT) scanning for assessing the resectability with curative intent in pancreatic and periampullary cancer. Cochrane Database Syst Rev 2016; 7: CD009323 https://pubmed.ncbi.nlm.nih.gov/27383694/
- 241 De Rosa A, Cameron I, Gomez D. Indications for staging laparoscopy in pancreatic cancer. HPB (Oxford) 2016; 18 (01) 13-20 https://pubmed.ncbi.nlm.nih.gov/26776846/
- 242 Levy J, Tahiri M, Vanounou T. et al. Diagnostic Laparoscopy with Ultrasound Still Has a Role in the Staging of Pancreatic Cancer: A Systematic Review of the Literature. HPB Surg 2016; 2016: 8092109 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829723/
- 243 Ta R, O’Connor D, Sulistijo A. et al. The Role of Staging Laparoscopy in Resectable and Borderline Resectable Pancreatic Cancer: A Systematic Review and Meta-Analysis. Dig Surg 2019; 36 (03) 251-260 https://pubmed.ncbi.nlm.nih.gov/29649825/
- 244 Isaji S, Mizuno S, Windsor JA. et al. International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology 2018; 18: 2-11 https://www.ncbi.nlm.nih.gov/pubmed/29191513
- 245 Wagner M, Redaelli C, Lietz M. et al. Curative resection is the single most important factor determining outcome in patients with pancreatic adenocarcinoma. Br J Surg 2004; 91: 586-594 https://pubmed.ncbi.nlm.nih.gov/15122610/
- 246 Fusai G, Warnaar N, Sabin CA. et al. Outcome of R1 resection in patients undergoing pancreatico-duodenectomy for pancreatic cancer. Eur J Surg Oncol 2008; 34: 1309-1315 https://www.ncbi.nlm.nih.gov/pubmed/18325723
- 247 Gaedcke J, Gunawan B, Grade M. et al. The mesopancreas is the primary site for R1 resection in pancreatic head cancer: relevance for clinical trials. Langenbecks Arch Surg 2010; 395: 451-458 https://www.ncbi.nlm.nih.gov/pubmed/19418067
- 248 Hartwig W, Hackert T, Hinz U. et al. Pancreatic cancer surgery in the new millennium: better prediction of outcome. Ann Surg 2011; 254: 311-319 https://www.ncbi.nlm.nih.gov/pubmed/21606835
- 249 Esposito I, Kleeff J, Bergmann F. et al. Most pancreatic cancer resections are R1 resections. Ann Surg Oncol 2008; 15: 1651-1660 https://www.ncbi.nlm.nih.gov/pubmed/18351300
- 250 Raut CP, Tseng JF, Sun CC. et al. Impact of resection status on pattern of failure and survival after pancreaticoduodenectomy for pancreatic adenocarcinoma. Ann Surg 2007; 246: 52-60 http://www.ncbi.nlm.nih.gov/pubmed/17592291
- 251 Chang DK, Johns AL, Merrett ND. et al. Margin clearance and outcome in resected pancreatic cancer. J Clin Oncol 2009; 27: 2855-2862 https://www.ncbi.nlm.nih.gov/pubmed/19398572
- 252 Campbell F, Smith RA, Whelan P. et al. Classification of R1 resections for pancreatic cancer: the prognostic relevance of tumour involvement within 1 mm of a resection margin. Histopathology 2009; 55: 277-283 https://www.ncbi.nlm.nih.gov/pubmed/19723142
- 253 Jamieson NB, Foulis AK, Oien KA. et al. Positive mobilization margins alone do not influence survival following pancreatico-duodenectomy for pancreatic ductal adenocarcinoma. Ann Surg 2010; 251: 1003-1010 http://www.ncbi.nlm.nih.gov/pubmed/20485150
- 254 Diener Markus K, Fitzmaurice C, Schwarzer G. et al. Pylorus-preserving pancreaticoduodenectomy (pp Whipple) versus pancreaticoduodenectomy (classic Whipple) for surgical treatment of periampullary and pancreatic carcinoma. Cochrane Database of Systematic Reviews 2011; https://pubmed.ncbi.nlm.nih.gov/21563148/
- 255 Kawai M, Tani M, Hirono S. et al. Pylorus ring resection reduces delayed gastric emptying in patients undergoing pancreatoduodenectomy: a prospective, randomized, controlled trial of pylorus-resecting versus pylorus-preserving pancreatoduodenectomy. Annals of surgery 2011; 253: 495-501 https://pubmed.ncbi.nlm.nih.gov/21248633/
- 256 Verbeke CS. Resection margins and R1 rates in pancreatic cancer--are we there yet?. Histopathology 2008; 52: 787-796 https://pubmed.ncbi.nlm.nih.gov/18081813/
- 257 Wittekind C, Compton C, Quirke P. et al. A uniform residual tumor (R) classification: integration of the R classification and the circumferential margin status. Cancer 2009; 115: 3483-3488 https://pubmed.ncbi.nlm.nih.gov/19536900/
- 258 Gajda M, Kenig J. Treatment outcomes of pancreatic cancer in the elderly – literature review. Folia Med Cracov 2018; 58: 49-66 https://www.ncbi.nlm.nih.gov/pubmed/30521511
- 259 Kim SY, Weinberg L, Christophi C. et al. The outcomes of pancreaticoduodenectomy in patients aged 80 or older: a systematic review and meta-analysis. HPB (Oxford) 2017; 19: 475-482 https://www.ncbi.nlm.nih.gov/pubmed/28292633
- 260 Sukharamwala P, Thoens J, Szuchmacher M. et al. Advanced age is a risk factor for post-operative complications and mortality after a pancreaticoduodenectomy: a meta-analysis and systematic review. HPB (Oxford) 2012; 14: 649-657 https://www.ncbi.nlm.nih.gov/pubmed/22954000
- 261 van der Geest LG, Besselink MG, van Gestel YR. et al. Pancreatic cancer surgery in elderly patients: Balancing between short-term harm and long-term benefit A population-based study in the Netherlands. Acta Oncol 2016; 55: 278-285 https://pubmed.ncbi.nlm.nih.gov/26552841/
- 262 Sho M, Murakami Y, Kawai M. et al. Prognosis after surgical treatment for pancreatic cancer in patients aged 80 years or older: a multicenter study. J Hepatobiliary Pancreat Sci 2016; 23: 188-197 https://www.ncbi.nlm.nih.gov/pubmed/26763744
- 263 Shirai Y, Shiba H, Horiuchi T. et al. Assessment of Surgical Outcome After Pancreatic Resection in Extremely Elderly Patients. Anticancer Res 2016; 36: 2011-2017 https://www.ncbi.nlm.nih.gov/pubmed/27069195
- 264 Sahakyan MA, Edwin B, Kazaryan AM. et al. Perioperative outcomes and survival in elderly patients undergoing laparoscopic distal pancreatectomy. J Hepatobiliary Pancreat Sci 2017; 24: 42-48 https://www.ncbi.nlm.nih.gov/pubmed/27794204
- 265 Renz BW, Khalil PN, Mikhailov M. et al. Pancreaticoduodenectomy for adenocarcinoma of the pancreatic head is justified in elderly patients: A Retrospective Cohort Study. Int J Surg 2016; 28: 118-125 https://pubmed.ncbi.nlm.nih.gov/26906329/
- 266 Miyazaki Y, Kokudo T, Amikura K. et al. Age does not affect complications and overall survival rate after pancreaticoduodenectomy: Single-center experience and systematic review of literature. Biosci Trends 2016; 10: 300-306 https://pubmed.ncbi.nlm.nih.gov/27396698/
- 267 Hsu CC, Wolfgang CL, Laheru DA. et al. Early mortality risk score: identification of poor outcomes following upfront surgery for resectable pancreatic cancer. J Gastrointest Surg 2012; 16: 753-761 https://www.ncbi.nlm.nih.gov/pubmed/22311282
- 268 He W, Zhao H, Chan W. et al. Underuse of surgical resection among elderly patients with early-stage pancreatic cancer. Surgery 2015; 158: 1226-1234 https://pubmed.ncbi.nlm.nih.gov/26138347/
- 269 Ansari D, Aronsson L, Fredriksson J. et al. Safety of pancreatic resection in the elderly: a retrospective analysis of 556 patients. Ann Gastroenterol 2016; 29: 221-225 https://www.ncbi.nlm.nih.gov/pubmed/27065736
- 270 Addeo P, Delpero JR, Paye F. et al. Pancreatic fistula after a pancreaticoduodenectomy for ductal adenocarcinoma and its association with morbidity: a multicentre study of the French Surgical Association. HPB (Oxford) 2014; 16: 46-55 https://pubmed.ncbi.nlm.nih.gov/23461663/
- 271 Lyu HG, Sharma G, Brovman E. et al. Risk Factors of Reoperation After Pancreatic Resection. Dig Dis Sci 2017; 62: 1666-1675 https://pubmed.ncbi.nlm.nih.gov/28341868/
- 272 Turrini O, Paye F, Bachellier P. et al. Pancreatectomy for adenocarcinoma in elderly patients: Postoperative outcomes and long term results: A study of the French Surgical Association. European Journal of Surgical Oncology 2013; 39: 171-178 https://pubmed.ncbi.nlm.nih.gov/22999411/
- 273 Tas F, Sen F, Odabas H. et al. Performance status of patients is the major prognostic factor at all stages of pancreatic cancer. Int J Clin Oncol 2013; 18: 839-846 https://www.ncbi.nlm.nih.gov/pubmed/22996141
- 274 Kleeff J, Costello E, Jackson R. et al. The impact of diabetes mellitus on survival following resection and adjuvant chemotherapy for pancreatic cancer. Br J Cancer 2016; 115: 887-894 https://pubmed.ncbi.nlm.nih.gov/27584663/
- 275 Feyko J, Hazard H, Cardinal J. et al. Pancreatectomy in Patients with Impaired Renal Function: How Risky Is It?. Am Surg 2016; 82: 16-21 https://www.ncbi.nlm.nih.gov/pubmed/26802844
- 276 Khorana AA, Mangu PB, Berlin J. et al. Potentially Curable Pancreatic Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2016; 34: 2541-2556 https://pubmed.ncbi.nlm.nih.gov/27247221/
- 277 Katz MHG, Crane CH, Varadhachary G. Management of Borderline Resectable Pancreatic Cancer. Seminars in Radiation Oncology 2014; 24: 105-112 https://pubmed.ncbi.nlm.nih.gov/24635867/
- 278 Allen PJ, Kuk D, Castillo CF. et al. Multi-institutional Validation Study of the American Joint Commission on Cancer (8th Edition) Changes for T and N Staging in Patients With Pancreatic Adenocarcinoma. Ann Surg 2017; 265: 185-191 https://www.ncbi.nlm.nih.gov/pubmed/27163957
- 279 National Comprehensive Cancer N. Pancreatic Adenocarcinoma, Version 12020 NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). 2020 https://pubmed.ncbi.nlm.nih.gov/33845462/
- 280 Ferrone CR, Finkelstein DM, Thayer SP. et al. Perioperative CA19-9 levels can predict stage and survival in patients with resectable pancreatic adenocarcinoma. J Clin Oncol 2006; 24: 2897-2902 https://www.ncbi.nlm.nih.gov/pubmed/16782929
- 281 Barton JG, Bois JP, Sarr MG. et al. Predictive and prognostic value of CA 19-9 in resected pancreatic adenocarcinoma. J Gastrointest Surg 2009; 13: 2050-2058 https://www.ncbi.nlm.nih.gov/pubmed/19756875
- 282 Hartwig W, Strobel O, Hinz U. et al. CA19-9 in potentially resectable pancreatic cancer: perspective to adjust surgical and perioperative therapy. Ann Surg Oncol 2013; 20: 2188-2196 https://www.ncbi.nlm.nih.gov/pubmed/23247983
- 283 Bergquist JR, Puig CA, Shubert CR. et al. Carbohydrate Antigen 19-9 Elevation in Anatomically Resectable, Early Stage Pancreatic Cancer Is Independently Associated with Decreased Overall Survival and an Indication for Neoadjuvant Therapy: A National Cancer Database Study. Journal of the American College of Surgeons 2016; 223: 52-65 https://pubmed.ncbi.nlm.nih.gov/27049786/
- 284 Michelakos T, Pergolini I, Castillo CFD. et al. Predictors of Resectability and Survival in Patients With Borderline and Locally Advanced Pancreatic Cancer who Underwent Neoadjuvant Treatment With FOLFIRINOX. Annals of surgery 2019; 269: 733-740 https://pubmed.ncbi.nlm.nih.gov/29227344/
- 285 Reni M, Zanon S, Balzano G. et al. Selecting patients for resection after primary chemotherapy for non-metastatic pancreatic adenocarcinoma. Annals of Oncology 2017; 28: 2786-2792 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed18&NEWS=N&AN=619305107
- 286 Nikfarjam M, Sehmbey M, Kimchi ET. et al. Additional organ resection combined with pancreaticoduodenectomy does not increase postoperative morbidity and mortality. J Gastrointest Surg 2009; 13: 915-921 https://pubmed.ncbi.nlm.nih.gov/19198960/
- 287 Fuhrman GM, Leach SD, Staley CA. et al. Rationale for en bloc vein resection in the treatment of pancreatic adenocarcinoma adherent to the superior mesenteric-portal vein confluence Pancreatic Tumor Study Group. Ann Surg 1996; 223: 154-162 https://pubmed.ncbi.nlm.nih.gov/8597509/
- 288 Leach SD, Lee JE, Charnsangavej C. et al. Survival following pancreaticoduodenectomy with resection of the superior mesenteric-portal vein confluence for adenocarcinoma of the pancreatic head. Br J Surg 1998; 85: 611-617 https://pubmed.ncbi.nlm.nih.gov/9635805/
- 289 Sasson AR, Hoffman JP, Ross EA. et al. En bloc resection for locally advanced cancer of the pancreas: is it worthwhile?. J Gastrointest Surg 2002; 6: 147-157 https://pubmed.ncbi.nlm.nih.gov/11992799/
- 290 Nakao A, Takeda S, Inoue S. et al. Indications and techniques of extended resection for pancreatic cancer. World J Surg 2006; 30: 976-982 https://pubmed.ncbi.nlm.nih.gov/16736324/
- 291 Shrikhande SV, Kleeff J, Reiser C. et al. Pancreatic resection for M1 pancreatic ductal adenocarcinoma. Ann Surg Oncol 2007; 14: 118-127 http://www.ncbi.nlm.nih.gov/pubmed/17066229
- 292 Burdelski CM, Reeh M, Bogoevski D. et al. Multivisceral resections in pancreatic cancer: identification of risk factors. World J Surg 2011; 35: 2756-2763 https://pubmed.ncbi.nlm.nih.gov/21938586/
- 293 Hartwig W, Hackert T, Hinz U. et al. Multivisceral resection for pancreatic malignancies: risk-analysis and long-term outcome. Ann Surg 2009; 250: 81-87 https://pubmed.ncbi.nlm.nih.gov/19561478/
- 294 Takaori K, Bassi C, Biankin A. et al. International Association of Pancreatology (IAP)/European Pancreatic Club (EPC) consensus review of guidelines for the treatment of pancreatic cancer. Pancreatology 2016; 16: 14-27 https://pubmed.ncbi.nlm.nih.gov/26699808/
- 295 Al-Hawary MM, Francis IR, Chari ST. et al. Pancreatic ductal adenocarcinoma radiology reporting template: Consensus statement of the society of abdominal radiology and the american pancreatic association. Radiology 2014; 270: 248-260 https://pubmed.ncbi.nlm.nih.gov/24355035/
- 296 Persigehl T, Baumhauer M, Baessler B. et al. Structured Reporting of Solid and Cystic Pancreatic Lesions in CT and MRI: Consensus-Based Structured Report Templates of the German Society of Radiology (DRG). Rofo 2020; 192: 641-656 https://www.ncbi.nlm.nih.gov/pubmed/32615626
- 297 Wittel UA, Lubgan D, Ghadimi M. et al. Consensus in determining the resectability of locally progressed pancreatic ductal adenocarcinoma – results of the Conko-007 multicenter trial. BMC Cancer 2019; 19: 979 https://pubmed.ncbi.nlm.nih.gov/31640628/
- 298 ZfKD, GEKID. Krebs in Deutschland. Bauchspeicheldrüse. 2016 https://www.krebsdaten.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland/kid_2019 / kid_2019_c25_bauchspeicheldruese.pdf?__blob=publicationFile
- 299 Agalianos C, Gouvas N, Papaparaskeva K. et al. Positive para-aortic lymph nodes following pancreatectomy for pancreatic cancer Systematic review and meta-analysis of impact on short term survival and association with clinicopathologic features. HPB (Oxford) 2016; 18: 633-641 https://pubmed.ncbi.nlm.nih.gov/27485057/
- 300 Cao F, Li J, Li A. et al. Prognostic significance of positive peritoneal cytology in resectable pancreatic cancer: A systemic review and metaanalysis. Oncotarget 2017; 8: 15004-15013 https://pubmed.ncbi.nlm.nih.gov/28122342/
- 301 Gebauer F, Damanakis AI, Bruns C. [Oligometastasis in pancreatic cancer: Current state of knowledge and spectrum of local therapy]. Chirurg 2018; 89: 510-515 https://www.ncbi.nlm.nih.gov/pubmed/29557488
- 302 Michalski CW, Erkan M, Huser N. et al. Resection of primary pancreatic cancer and liver metastasis: a systematic review. Dig Surg 2008; 25: 473-480 http://www.ncbi.nlm.nih.gov/pubmed/19212120
- 303 Crippa S, Bittoni A, Sebastiani E. et al. Is there a role for surgical resection in patients with pancreatic cancer with liver metastases responding to chemotherapy?. European Journal of Surgical Oncology 2016; 42: 1533-1539 https://pubmed.ncbi.nlm.nih.gov/27423449/
- 304 Hempel S, Plodeck V, Mierke F. et al. Para-aortic lymph node metastases in pancreatic cancer should not be considered a watershed for curative resection. Scientific reports 2017; 7: 7688 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emexb&NEWS=N&AN=626324641
- 305 Kim Y, Kim SC, Song KB. et al. Improved survival after palliative resection of unsuspected stage IV pancreatic ductal adenocarcinoma. HPB 2016; 18: 325-331 https://pubmed.ncbi.nlm.nih.gov/27037201/
- 306 Klaiber U, Schnaidt ES, Hinz U. et al. Prognostic Factors of Survival After Neoadjuvant Treatment and Resection for Initially Unresectable Pancreatic Cancer. Annals of surgery 2019; https://pubmed.ncbi.nlm.nih.gov/30921051/
- 307 Lowder CY, Metkus J, Epstein J. et al. Clinical Implications of Extensive Lymph Node Metastases for Resected Pancreatic Cancer. Annals of Surgical Oncology 2018; 25: 4004-4011 https://pubmed.ncbi.nlm.nih.gov/30225835/
- 308 Philips P, Dunki-Jacobs E, Agle SC. et al. The role of hepatic artery lymph node in pancreatic adenocarcinoma: prognostic factor or a selection criterion for surgery. HPB: the official journal of the International Hepato Pancreato Biliary Association 2014; 16: 1051-1055 https://pubmed.ncbi.nlm.nih.gov/25123504/
- 309 Shi HJ, Jin C, Fu DL. Preoperative evaluation of pancreatic ductal adenocarcinoma with synchronous liver metastasis: Diagnosis and assessment of unresectability. World Journal of Gastroenterology 2016; 22: 10024-10037 https://pubmed.ncbi.nlm.nih.gov/28018110/
- 310 Tachezy M, Gebauer F, Janot M. et al. Synchronous resections of hepatic oligometastatic pancreatic cancer: Disputing a principle in a time of safe pancreatic operations in a retrospective multicenter analysis. Surgery (United States) 2016; 160: 136-144 https://pubmed.ncbi.nlm.nih.gov/27048934/
- 311 Gleisner AL, Assumpcao L, Cameron JL. et al. Is resection of periampullary or pancreatic adenocarcinoma with synchronous hepatic metastasis justified?. Cancer 2007; 110: 2484-2492 https://pubmed.ncbi.nlm.nih.gov/17941009/
- 312 Takada T, Yasuda H, Amano H. et al. Simultaneous hepatic resection with pancreato-duodenectomy for metastatic pancreatic head carcinoma: does it improve survival?. Hepatogastroenterology 1997; 44: 567-573 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9164539
- 313 Massucco P, Ribero D, Sgotto E. et al. Prognostic significance of lymph node metastases in pancreatic head cancer treated with extended lymphadenectomy: not just a matter of numbers. Ann Surg Oncol 2009; 16: 3323-3332 http://www.ncbi.nlm.nih.gov/pubmed/19777195
- 314 Doi R, Kami K, Ito D. et al. Prognostic implication of para-aortic lymph node metastasis in resectable pancreatic cancer. World J Surg 2007; 31: 147-154 https://www.ncbi.nlm.nih.gov/pubmed/17171496
- 315 Kanda M, Fujii T, Nagai S. et al. Pattern of lymph node metastasis spread in pancreatic cancer. Pancreas 2011; 40: 951-955
- 316 Cordera F, Arciero CA, Li T. et al. Significance of common hepatic artery lymph node metastases during pancreaticoduodenectomy for pancreatic head adenocarcinoma. Ann Surg Oncol 2007; 14: 2330-2336 https://www.ncbi.nlm.nih.gov/pubmed/17492334
- 317 Yamada S, Nakao A, Fujii T. et al. Pancreatic cancer with paraaortic lymph node metastasis: a contraindication for radical surgery?. Pancreas 2009; 38: e13-e17 https://pubmed.ncbi.nlm.nih.gov/18797422/
- 318 Tao L, Yuan C, Ma Z. et al. Surgical resection of a primary tumor improves survival of metastatic pancreatic cancer: A population-based study. Cancer Management and Research 2017; 9: 471-479 https://pubmed.ncbi.nlm.nih.gov/29056856/
- 319 Liu X, Fu Y, Chen Q. et al. Predictors of distant metastasis on exploration in patients with potentially resectable pancreatic cancer. BMC Gastroenterology 2018; 18: 168 https://pubmed.ncbi.nlm.nih.gov/30400836/
- 320 Murakami Y, Uemura K, Sudo T. et al. Prognostic impact of para-aortic lymph node metastasis in pancreatic ductal adenocarcinoma. World J Surg 2010; 34: 1900-1907 http://www.ncbi.nlm.nih.gov/pubmed/20376442
- 321 Hackert T, Niesen W, Hinz U. et al. Radical surgery of oligometastatic pancreatic cancer. Eur J Surg Oncol 2017; 43: 358-363 https://www.ncbi.nlm.nih.gov/pubmed/27856064
- 322 Yang J, Zhang J, Lui W. et al. Patients with hepatic oligometastatic pancreatic body/tail ductal adenocarcinoma may benefit from synchronous resection. HPB (Oxford) 2020; 22: 91-101 https://pubmed.ncbi.nlm.nih.gov/31262486/
- 323 Damanakis AI, Ostertag L, Waldschmidt D. et al. Proposal for a definition of “Oligometastatic disease in pancreatic cancer”. BMC Cancer 2019; 19: 1261 https://www.ncbi.nlm.nih.gov/pubmed/31888547
- 324 Kandel P, Wallace MB, Stauffer J. et al. Survival of Patients with Oligometastatic Pancreatic Ductal Adenocarcinoma Treated with Combined Modality Treatment Including Surgical Resection: A Pilot Study. Journal of Pancreatic Cancer 2018; 4: 88-94 https://pubmed.ncbi.nlm.nih.gov/30631861/
- 325 Antoniou E, Margonis GA, Sasaki K. et al. Is resection of pancreatic adenocarcinoma with synchronous hepatic metastasis justified? A review of current literature. ANZ journal of surgery 2016; 86: 973-977 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed17&NEWS=N&AN=614761362
- 326 Oweira H, Petrausch U, Helbling D. et al. Prognostic value of site-specific metastases in pancreatic adenocarcinoma: A Surveillance Epidemiology and End Results database analysis. World J Gastroenterol 2017; 23: 1872-1880 https://pubmed.ncbi.nlm.nih.gov/28348494/
- 327 Lovecek M, Skalicky P, Chudacek J. et al. Different clinical presentations of metachronous pulmonary metastases after resection of pancreatic ductal adenocarcinoma: Retrospective study and review of the literature. World Journal of Gastroenterology 2017; 23: 6420-6428 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed18&NEWS=N&AN=618507189
- 328 Liu K, Hung C, Hsueh S. et al. Lung Metastases in Patients with Stage IV Pancreatic Cancer: Prevalence, Risk Factors, and Survival Impact. Journal of clinical medicine 2019; 8: 1402 https://pubmed.ncbi.nlm.nih.gov/31500146/
- 329 Ilmer M, Schiergens TS, Renz BW. et al. Oligometastatic pulmonary metastasis in pancreatic cancer patients: Safety and outcome of resection. Surgical Oncology 2019; 31: 16-21 http://www.sciencedirect.com/science/article/pii/S096074041930074X
- 330 Liu Q, Zhang R, Michalski CW. et al. Surgery for synchronous and metachronous single-organ metastasis of pancreatic cancer: a SEER database analysis and systematic literature review. Sci Rep 2020; 10: 4444 https://www.ncbi.nlm.nih.gov/pubmed/32157155
- 331 Sakaguchi T, Valente R, Tanaka K. et al. Surgical treatment of metastatic pancreatic ductal adenocarcinoma: A review of current literature. Pancreatology 2019; 19: 672-680 https://www.ncbi.nlm.nih.gov/pubmed/31285145
- 332 Schwarz M, Isenmann R, Thomsen J. et al. Efficacy of oral ofloxacin for single-dose perioperative prophylaxis in general surgery--a controlled randomized clinical study. Langenbecks Arch Surg 2001; 386: 397-401 http://www.ncbi.nlm.nih.gov/pubmed/11735011
- 333 Targarona EM, Garau J, Munoz-Ramos C. et al. Single-dose antibiotic prophylaxis in patients at high risk for infection in biliary surgery: a prospective and randomized study comparing cefonicid with mezlocillin. Surgery 1990; 107: 327-334 https://pubmed.ncbi.nlm.nih.gov/2106732/
- 334 Kujath P, Bouchard R, Scheele J. et al. [Current perioperative antibiotic prophylaxis]. Chirurg 2006; 77: 490, 492-468 https://pubmed.ncbi.nlm.nih.gov/16773347/
- 335 Barnett SP, Hodul PJ, Creech S. et al. Octreotide does not prevent postoperative pancreatic fistula or mortality following Pancreaticoduodenectomy. Am Surg 2004; 70: 222-226 https://www.ncbi.nlm.nih.gov/pubmed/15055845
- 336 Friess H, Buchler MW. Efficacy of somatostatin and its analogues in pancreatic surgery and pancreatic disorders. Digestion 1996; 57 (Suppl. 01) 97-102 https://www.ncbi.nlm.nih.gov/pubmed/8813484
- 337 Gouillat C, Chipponi J, Baulieux J. et al. Randomized controlled multicentre trial of somatostatin infusion after pancreaticoduodenectomy. Br J Surg 2001; 88: 1456-1462 https://www.ncbi.nlm.nih.gov/pubmed/11683740
- 338 Hesse UJ, DeDecker C, Houtmeyers P. et al. Prospectively randomized trial using perioperative low-dose octreotide to prevent organ-related and general complications after pancreatic surgery and pancreatico-jejunostomy. World J Surg 2005; 29: 1325-1328 http://www.ncbi.nlm.nih.gov/pubmed/16132406
- 339 Montorsi M, Zago M, Mosca F. et al. Efficacy of octreotide in the prevention of pancreatic fistula after elective pancreatic resections: a prospective, controlled, randomized clinical trial. Surgery 1995; 117: 26-31 http://www.ncbi.nlm.nih.gov/pubmed/7809832
- 340 Pederzoli P, Bassi C, Falconi M. et al. Efficacy of octreotide in the prevention of complications of elective pancreatic surgery Italian Study Group. Br J Surg 1994; 81: 265-269 http://www.ncbi.nlm.nih.gov/pubmed/8156354
- 341 Yeo CJ, Cameron JL, Lillemoe KD. et al. Does prophylactic octreotide decrease the rates of pancreatic fistula and other complications after pancreaticoduodenectomy? Results of a prospective randomized placebo-controlled trial. Ann Surg 2000; 232: 419-429 https://pubmed.ncbi.nlm.nih.gov/10973392/
- 342 Connor S, Alexakis N, Garden OJ. et al. Meta-analysis of the value of somatostatin and its analogues in reducing complications associated with pancreatic surgery. Br J Surg 2005; 92: 1059-1067 https://www.ncbi.nlm.nih.gov/pubmed/16044410
- 343 Konishi M, Kinoshita T, Nakagohri T. et al. Prognostic value of cytologic examination of peritoneal washings in pancreatic cancer. Arch Surg 2002; 137: 475-480 https://pubmed.ncbi.nlm.nih.gov/11926958/
- 344 Yachida S, Fukushima N, Sakamoto M. et al. Implications of peritoneal washing cytology in patients with potentially resectable pancreatic cancer. Br J Surg 2002; 89: 573-578 https://pubmed.ncbi.nlm.nih.gov/11972546/
- 345 Heeckt P, Safi F, Binder T. et al. [Free intraperitoneal tumors cells in pancreatic cancer--significance for clinical course and therapy]. Chirurg 1992; 63: 563-567 https://pubmed.ncbi.nlm.nih.gov/1380421/
- 346 Kinoshita T, Ozaki H, Kosuge T. et al. [Effectiveness of intraoperative cytological examination of peritoneal washings for patients with pancreatic cancer]. Nihon Geka Gakkai Zasshi 1992; 93: 1410-1415 https://pubmed.ncbi.nlm.nih.gov/1448048/
- 347 Makary MA, Warshaw AL, Centeno BA. et al. Implications of peritoneal cytology for pancreatic cancer management. Arch Surg 1998; 133: 361-365 https://pubmed.ncbi.nlm.nih.gov/9565114/
- 348 Nakao A, Oshima K, Takeda S. et al. Peritoneal washings cytology combined with immunocytochemical staining in pancreatic cancer. Hepatogastroenterology 1999; 46: 2974-2977 https://pubmed.ncbi.nlm.nih.gov/10576385/
- 349 Warshaw AL. Implications of peritoneal cytology for staging of early pancreatic cancer. Am J Surg 1991; 161: 26-29 https://pubmed.ncbi.nlm.nih.gov/1824810/
- 350 Bachellier P, Nakano H, Oussoultzoglou PD. et al. Is pancreaticoduodenectomy with mesentericoportal venous resection safe and worthwhile?. Am J Surg 2001; 182: 120-129 https://www.ncbi.nlm.nih.gov/pubmed/11574081
- 351 Bassi C, Stocken DD, Olah A. et al. Influence of surgical resection and post-operative complications on survival following adjuvant treatment for pancreatic cancer in the ESPAC-1 randomized controlled trial. Dig Surg 2005; 22: 353-363 https://www.ncbi.nlm.nih.gov/pubmed/16293966
- 352 Capussotti L, Massucco P, Ribero D. et al. Extended lymphadenectomy and vein resection for pancreatic head cancer: outcomes and implications for therapy. Arch Surg 2003; 138: 1316-1322 https://www.ncbi.nlm.nih.gov/pubmed/14662531
- 353 Farnell MB, Pearson RK, Sarr MG. et al. A prospective randomized trial comparing standard pancreatoduodenectomy with pancreatoduodenectomy with extended lymphadenectomy in resectable pancreatic head adenocarcinoma. Surgery 2005; 138: 618-628 https://www.ncbi.nlm.nih.gov/pubmed/16269290
- 354 Fernandez-del Castillo C, Rattner DW, Warshaw AL. Standards for pancreatic resection in the 1990s. Arch Surg 1995; 130: 295-299 https://www.ncbi.nlm.nih.gov/pubmed/7887797
- 355 Hartel M, Niedergethmann M, Farag-Soliman M. et al. Benefit of venous resection for ductal adenocarcinoma of the pancreatic head. Eur J Surg 2002; 168: 707-712 https://www.ncbi.nlm.nih.gov/pubmed/15362580
- 356 Ishikawa O, Ohigashi H, Sasaki Y. et al. Practical grouping of positive lymph nodes in pancreatic head cancer treated by an extended pancreatectomy. Surgery 1997; 121: 244-249 http://www.ncbi.nlm.nih.gov/pubmed/9068665
- 357 Jurowich C, Meyer W, Adamus R. et al. [Portal vein resection in the framework of surgical therapy of pancreatic head carcinoma: clarification of indication by improved preoperative diagnostic procedures?]. Chirurg 2000; 71: 803-807 http://www.ncbi.nlm.nih.gov/pubmed/10986602
- 358 Kawarada Y, Yokoi H, Isaji S. et al. Modified standard pancreaticoduodenectomy for the treatment of pancreatic head cancer. Digestion 1999; 60 (Suppl. 01) 120-125 http://www.ncbi.nlm.nih.gov/pubmed/10026445
- 359 Klempnauer J, Ridder GJ, Bektas H. et al. Extended resections of ductal pancreatic cancer--impact on operative risk and prognosis. Oncology 1996; 53: 47-53 http://www.ncbi.nlm.nih.gov/pubmed/8570131
- 360 Klinkenbijl JH, van der Schelling GP, Hop WC. et al. The advantages of pylorus-preserving pancreatoduodenectomy in malignant disease of the pancreas and periampullary region. Ann Surg 1992; 216: 142-145 http://www.ncbi.nlm.nih.gov/pubmed/1354435
- 361 Kremer B, Vogel I, Luttges J. et al. Surgical possibilities for pancreatic cancer: extended resection. Ann Oncol 1999; 10 (Suppl. 04) 252-256 http://www.ncbi.nlm.nih.gov/pubmed/10436834
- 362 Lin PW, Shan YS, Lin YJ. et al. Pancreaticoduodenectomy for pancreatic head cancer: PPPD versus Whipple procedure. Hepatogastroenterology 2005; 52: 1601-1604 http://www.ncbi.nlm.nih.gov/pubmed/16201125
- 363 Lygidakis NJ, Singh G, Bardaxoglou E. et al. Mono-bloc total spleno-pancreaticoduodenectomy for pancreatic head carcinoma with portal-mesenteric venous invasion A prospective randomized study. Hepatogastroenterology 2004; 51: 427-433 http://www.ncbi.nlm.nih.gov/pubmed/15086174
- 364 Mu DQ, Peng SY, Wang GF. Extended radical operation of pancreatic head cancer: appraisal of its clinical significance. World J Gastroenterol 2005; 11: 2467-2471 http://www.ncbi.nlm.nih.gov/pubmed/15832419
- 365 Nakao A, Takeda S, Sakai M. et al. Extended radical resection versus standard resection for pancreatic cancer: the rationale for extended radical resection. Pancreas 2004; 28: 289-292 http://www.ncbi.nlm.nih.gov/pubmed/15084973
- 366 Pedrazzoli S, DiCarlo V, Dionigi R. et al. Standard versus extended lymphadenectomy associated with pancreatoduodenectomy in the surgical treatment of adenocarcinoma of the head of the pancreas: a multicenter, prospective, randomized study Lymphadenectomy Study Group. Ann Surg 1998; 228: 508-517 https://pubmed.ncbi.nlm.nih.gov/9790340/
- 367 Roher HD, Heise JW, Goretzki PE. [Stomach saving duodenopancreatectomy Indications and contraindications The most important surgical steps]. Zentralbl Chir 2000; 125: 961-965 http://www.ncbi.nlm.nih.gov/pubmed/11190613
- 368 Schafer M, Mullhaupt B, Clavien PA. Evidence-based pancreatic head resection for pancreatic cancer and chronic pancreatitis. Ann Surg 2002; 236: 137-148 http://www.ncbi.nlm.nih.gov/pubmed/12170018
- 369 Takada T, Yasuda H, Amano H. et al. Results of a pylorus-preserving pancreatoduodenectomy for pancreatic cancer: a comparison with results of the Whipple procedure. Hepatogastroenterology 1997; 44: 1536-1540 http://www.ncbi.nlm.nih.gov/pubmed/9427018
- 370 Tran KT, Smeenk HG, van Eijck CH. et al. Pylorus preserving pancreaticoduodenectomy versus standard Whipple procedure: a prospective, randomized, multicenter analysis of 170 patients with pancreatic and periampullary tumors. Ann Surg 2004; 240: 738-745 http://www.ncbi.nlm.nih.gov/pubmed/15492552
- 371 Tseng JF, Raut CP, Lee JE. et al. Pancreaticoduodenectomy with vascular resection: margin status and survival duration. J Gastrointest Surg 2004; 8: 935-949 http://www.ncbi.nlm.nih.gov/pubmed/15585381
- 372 Zerbi A, Balzano G, Patuzzo R. et al. Comparison between pylorus-preserving and Whipple pancreatoduodenectomy. Br J Surg 1995; 82: 975-979 https://pubmed.ncbi.nlm.nih.gov/7648124/
- 373 Diener MK, Knaebel HP, Heukaufer C. et al. A systematic review and meta-analysis of pylorus-preserving versus classical pancreaticoduodenectomy for surgical treatment of periampullary and pancreatic carcinoma. Ann Surg 2007; 245: 187-200 https://pubmed.ncbi.nlm.nih.gov/17245171/
- 374 Christein JD, Kendrick ML, Iqbal CW. et al. Distal pancreatectomy for resectable adenocarcinoma of the body and tail of the pancreas. J Gastrointest Surg 2005; 9: 922-927 https://www.ncbi.nlm.nih.gov/pubmed/16137585
- 375 Gebhardt C, Meyer W, Jurowich C. [Is resection of left-sided ductal pancreatic carcinoma of value?]. Zentralbl Chir 2000; 125: 966-969 https://www.ncbi.nlm.nih.gov/pubmed/11190614
- 376 Kayahara M, Nagakawa T, Ueno K. et al. Distal pancreatectomy--does it have a role for pancreatic body and tail cancer. Hepatogastroenterology 1998; 45: 827-832 http://www.ncbi.nlm.nih.gov/pubmed/9684142
- 377 Mayumi T, Nimura Y, Kamiya J. et al. Distal pancreatectomy with en bloc resection of the celiac artery for carcinoma of the body and tail of the pancreas. Int J Pancreatol 1997; 22: 15-21 http://www.ncbi.nlm.nih.gov/pubmed/9387020
- 378 Shimada K, Sakamoto Y, Sano T. et al. Prognostic factors after distal pancreatectomy with extended lymphadenectomy for invasive pancreatic adenocarcinoma of the body and tail. Surgery 2006; 139: 288-295 https://pubmed.ncbi.nlm.nih.gov/16546491/
- 379 Shoup M, Conlon KC, Klimstra D. et al. Is extended resection for adenocarcinoma of the body or tail of the pancreas justified?. J Gastrointest Surg 2003; 7: 946-952 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14675703
- 380 Kondo S, Katoh H, Hirano S. et al. Results of radical distal pancreatectomy with en bloc resection of the celiac artery for locally advanced cancer of the pancreatic body. Langenbecks Arch Surg 2003; 388: 101-106 http://www.ncbi.nlm.nih.gov/pubmed/12684805
- 381 Choi S, Han H, Park P. et al. Systematic review of the clinical significance of lymph node micrometastases of pancreatic adenocarcinoma following surgical resection. Pancreatology 2017; 17 (03) 342-349 https://pubmed.ncbi.nlm.nih.gov/28336226/
- 382 Dasari B, Pasquali S, Vohra R. et al. Extended Versus Standard Lymphadenectomy for Pancreatic Head Cancer: Meta-Analysis of Randomized Controlled Trials. J Gastrointest Surg 2015; 19 (09) 1725-1732 https://pubmed.ncbi.nlm.nih.gov/26055135/
- 383 Elshaer M, Gravante G, Kosmin M. et al. A systematic review of the prognostic value of lymph node ratio, number of positive nodes and total nodes examined in pancreatic ductal adenocarcinoma. Ann R Coll Surg Engl 2017; 99 (02) 101-106 https://pubmed.ncbi.nlm.nih.gov/27869496/
- 384 Karjol U, Chandranath A, Jonnada P. et al. Lymph Node Ratio as a Prognostic Marker in Pancreatic Cancer Survival: A Systematic Review and Meta-Analysis. Cureus 2020; 12 (08) e9597 https://pubmed.ncbi.nlm.nih.gov/32789099/
- 385 Ke K, Chen W, Chen Y. Standard and extended lymphadenectomy for adenocarcinoma of the pancreatic head: a meta-analysis and systematic review. J Gastroenterol Hepatol 2014; 29 (03) 453-462 https://pubmed.ncbi.nlm.nih.gov/24164704/
- 386 Kotb A, Hajibandeh S, Hajibandeh S. et al. Meta-analysis and trial sequential analysis of randomised controlled trials comparing standard versus extended lymphadenectomy in pancreatoduodenectomy for adenocarcinoma of the head of pancreas. Langenbecks Arch Surg 2021; 406 (03) 547-561 https://pubmed.ncbi.nlm.nih.gov/32978673/
- 387 Orci L, Meyer J, Combescure C. et al. A meta-analysis of extended versus standard lymphadenectomy in patients undergoing pancreatoduodenectomy for pancreatic adenocarcinoma. HPB (Oxford) 2015; 17 (07) 565-572 https://pubmed.ncbi.nlm.nih.gov/25913578/
- 388 Pedrazzoli S. Extent of lymphadenectomy to associate with pancreaticoduodenectomy in patients with pancreatic head cancer for better tumor staging. Cancer Treat Rev 2015; 41 (07) 577-587 https://pubmed.ncbi.nlm.nih.gov/26045226/
- 389 Staerkle R, Vuille-Dit-Bille R, Soll C. et al. Extended lymph node resection versus standard resection for pancreatic and periampullary adenocarcinoma. Cochrane Database Syst Rev 2021; 1: CD011490 https://pubmed.ncbi.nlm.nih.gov/33471373/
- 390 Svoronos C, Tsoulfas G, Katsourakis A. et al. Role of extended lymphadenectomy in the treatment of pancreatic head adenocarcinoma: review and meta-analysis. ANZ J Surg 2014; 84 (10) 706-711 https://pubmed.ncbi.nlm.nih.gov/24165093/
- 391 Wang W, He Y, Wu L. et al. Efficacy of extended versus standard lymphadenectomy in pancreatoduodenectomy for pancreatic head adenocarcinoma An update meta-analysis. Pancreatology 2019; 19 (08) 1074-1080 https://pubmed.ncbi.nlm.nih.gov/31668841/
- 392 Franceschilli M, Vinci D, Di Carlo S. et al. Central vascular ligation and mesentery based abdominal surgery. Discov Oncol 2021; 12 (01) 24 https://pubmed.ncbi.nlm.nih.gov/35201479/
- 393 Bhatti I, Peacock O, Awan AK. et al. Lymph node ratio versus number of affected lymph nodes as predictors of survival for resected pancreatic adenocarcinoma. World J Surg 2010; 34: 768-775 https://pubmed.ncbi.nlm.nih.gov/20052471/
- 394 Garcea G, Dennison AR, Ong SL. et al. Tumour characteristics predictive of survival following resection for ductal adenocarcinoma of the head of pancreas. Eur J Surg Oncol 2007; 33: 892-897 https://pubmed.ncbi.nlm.nih.gov/17398060/
- 395 Hellan M, Sun CL, Artinyan A. et al. The impact of lymph node number on survival in patients with lymph node-negative pancreatic cancer. Pancreas 2008; 37: 19-24 https://pubmed.ncbi.nlm.nih.gov/18580439/
- 396 House MG, Gonen M, Jarnagin WR. et al. Prognostic significance of pathologic nodal status in patients with resected pancreatic cancer. J Gastrointest Surg 2007; 11: 1549-1555 https://pubmed.ncbi.nlm.nih.gov/17786531/
- 397 Konstantinidis IT, Deshpande V, Zheng H. et al. Does the mechanism of lymph node invasion affect survival in patients with pancreatic ductal adenocarcinoma?. J Gastrointest Surg 2010; 14: 261-267 https://pubmed.ncbi.nlm.nih.gov/19937477/
- 398 La Torre M, Cavallini M, Ramacciato G. et al. Role of the Lymph node ratio in pancreatic ductal adenocarcinoma Impact on patient stratification and prognosis. Journal of Surgical Oncology 2011; https://pubmed.ncbi.nlm.nih.gov/21713779/
- 399 Murakami Y, Uemura K, Sudo T. et al. Number of metastatic lymph nodes, but not lymph node ratio, is an independent prognostic factor after resection of pancreatic carcinoma. J Am Coll Surg 2010; 211: 196-204 https://pubmed.ncbi.nlm.nih.gov/20670857/
- 400 Pai RK, Beck AH, Mitchem J. et al. Pattern of lymph node involvement and prognosis in pancreatic adenocarcinoma: direct lymph node invasion has similar survival to node-negative disease. Am J Surg Pathol 2011; 35: 228-234 https://pubmed.ncbi.nlm.nih.gov/21263243/
- 401 Pawlik TM, Gleisner AL, Cameron JL. et al. Prognostic relevance of lymph node ratio following pancreaticoduodenectomy for pancreatic cancer. Surgery 2007; 141: 610-618 https://pubmed.ncbi.nlm.nih.gov/17462460/
- 402 Prenzel KL, Holscher AH, Vallbohmer D. et al. Lymph node size and metastatic infiltration in adenocarcinoma of the pancreatic head. Eur J Surg Oncol 2010; 36: 993-996 https://pubmed.ncbi.nlm.nih.gov/20594789/
- 403 Riediger H, Keck T, Wellner U. et al. The lymph node ratio is the strongest prognostic factor after resection of pancreatic cancer. J Gastrointest Surg 2009; 13: 1337-1344 https://pubmed.ncbi.nlm.nih.gov/19418101/
- 404 Sahin TT, Fujii T, Kanda M. et al. Prognostic Implications of Lymph Node Metastases in Carcinoma of the Body and Tail of the Pancreas. Pancreas 2011; https://pubmed.ncbi.nlm.nih.gov/21705947/
- 405 Showalter TN, Winter KA, Berger AC. et al. The Influence of Total Nodes Examined, Number of Positive Nodes, and Lymph Node Ratio on Survival after Surgical Resection and Adjuvant Chemoradiation for Pancreatic Cancer: A Secondary Analysis of RTOG 9704. Int J Radiat Oncol Biol Phys 2010; https://pubmed.ncbi.nlm.nih.gov/20934270/
- 406 Slidell MB, Chang DC, Cameron JL. et al. Impact of total lymph node count and lymph node ratio on staging and survival after pancreatectomy for pancreatic adenocarcinoma: a large, population-based analysis. Ann Surg Oncol 2008; 15: 165-174 https://pubmed.ncbi.nlm.nih.gov/17896141/
- 407 Chen S, Zhan Q, Jin JB. et al. Robot-assisted laparoscopic versus open middle pancreatectomy: short-term results of a randomized controlled trial. Surg Endosc 2017; 31: 962-971 https://www.ncbi.nlm.nih.gov/pubmed/27402095
- 408 Xourafas D, Ashley SW, Clancy TE. Comparison of Perioperative Outcomes between Open, Laparoscopic, and Robotic Distal Pancreatectomy: an Analysis of 1815 Patients from the ACS-NSQIP Procedure-Targeted Pancreatectomy Database. J Gastrointest Surg 2017; 21: 1442-1452 https://pubmed.ncbi.nlm.nih.gov/28573358/
- 409 Mirkin KA, Greenleaf EK, Hollenbeak CS. et al. Minimally invasive surgical approaches offer earlier time to adjuvant chemotherapy but not improved survival in resected pancreatic cancer. Surg Endosc 2018; 32: 2387-2396 https://pubmed.ncbi.nlm.nih.gov/29101568/
- 410 Kauffmann EF, Napoli N, Menonna F. et al. A propensity score-matched analysis of robotic versus open pancreatoduodenectomy for pancreatic cancer based on margin status. Surgical Endoscopy 2019; 33: 234-242 https://pubmed.ncbi.nlm.nih.gov/29943061/
- 411 Boggi U, Napoli N, Costa F. et al. Robotic-Assisted Pancreatic Resections. World J Surg 2016; 40: 2497-2506 https://www.ncbi.nlm.nih.gov/pubmed/27206401
- 412 Adam MA, Thomas S, Youngwirth L. et al. Defining a Hospital Volume Threshold for Minimally Invasive Pancreaticoduodenectomy in the United States. JAMA Surg 2017; 152: 336-342 https://www.ncbi.nlm.nih.gov/pubmed/28030713
- 413 Abu Hilal M, Hamdan M, Di Fabio F. et al. Laparoscopic versus open distal pancreatectomy: a clinical and cost-effectiveness study. Surg Endosc 2012; 26: 1670-1674 https://pubmed.ncbi.nlm.nih.gov/22179475/
- 414 Raoof M, Ituarte PHG, Woo Y. et al. Propensity score-matched comparison of oncological outcomes between laparoscopic and open distal pancreatic resection. The British journal of surgery 2018; 105: 578-586 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emexb&NEWS=N&AN=625133363
- 415 de Rooij T, van Hilst J, van Santvoort H. et al. Minimally Invasive Versus Open Distal Pancreatectomy (LEOPARD): A Multicenter Patient-blinded Randomized Controlled Trial. Ann Surg 2019; 269: 2-9 https://www.ncbi.nlm.nih.gov/pubmed/30080726
- 416 de Rooij T, van Hilst J, Boerma D. et al. Impact of a Nationwide Training Program in Minimally Invasive Distal Pancreatectomy (LAELAPS). Ann Surg 2016; 264: 754-762 https://www.ncbi.nlm.nih.gov/pubmed/27741008
- 417 Klompmaker S, de Rooij T, Koerkamp BG. et al. International Validation of Reduced Major Morbidity After Minimally Invasive Distal Pancreatectomy Compared With Open Pancreatectomy. Ann Surg 2019; https://pubmed.ncbi.nlm.nih.gov/31756173/
- 418 Plotkin A, Ceppa EP, Zarzaur BL. et al. Reduced morbidity with minimally invasive distal pancreatectomy for pancreatic adenocarcinoma. HPB: the official journal of the International Hepato Pancreato Biliary Association 2017; 19: 279-285 https://pubmed.ncbi.nlm.nih.gov/28161217/
- 419 Tran Cao HS, Lopez N, Chang DC. et al. Improved perioperative outcomes with minimally invasive distal pancreatectomy: results from a population-based analysis. JAMA Surgery 2014; 149: 237-243 https://pubmed.ncbi.nlm.nih.gov/24402232/
- 420 Bauman MD, Becerra DG, Kilbane EM. et al. Laparoscopic distal pancreatectomy for pancreatic cancer is safe and effective. Surgical Endoscopy 2018; 32: 53-61 https://pubmed.ncbi.nlm.nih.gov/28643065/
- 421 Huang B, Feng L, Zhao J. Systematic review and meta-analysis of robotic versus laparoscopic distal pancreatectomy for benign and malignant pancreatic lesions. Surgical Endoscopy 2016; 30: 4078-4085 https://pubmed.ncbi.nlm.nih.gov/26743110/
- 422 Zhao W, Liu C, Li S. et al. Safety and efficacy for robot-assisted versus open pancreaticoduodenectomy and distal pancreatectomy: A systematic review and meta-analysis. Surg Oncol 2018; 27: 468-478 https://pubmed.ncbi.nlm.nih.gov/30217304/
- 423 Lyman WB, Passeri M, Sastry A. et al. Robotic-assisted versus laparoscopic left pancreatectomy at a high-volume, minimally invasive center. Surg Endosc 2019; 33: 2991-3000
- 424 Kornaropoulos M, Moris D, Beal E. et al. Total robotic pancreaticoduodenectomy: a systematic review of the literature. Surgical Endoscopy 2017; 31: 4382-4392 https://pubmed.ncbi.nlm.nih.gov/28389798/
- 425 McMillan MT, Zureikat AH, Hogg ME. et al. A propensity score-matched analysis of robotic vs open pancreatoduodenectomy on incidence of pancreatic fistula. JAMA Surgery 2017; 152: 327-335 https://pubmed.ncbi.nlm.nih.gov/28030724/
- 426 Nickel F, Haney CM, Kowalewski KF. et al. Laparoscopic Versus Open Pancreaticoduodenectomy: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Ann Surg 2020; 271: 54-66 https://pubmed.ncbi.nlm.nih.gov/30973388/
- 427 Palanivelu C, Senthilnathan P, Sabnis SC. et al. Randomized clinical trial of laparoscopic versus open pancreatoduodenectomy for periampullary tumours. Br J Surg 2017; 104: 1443-1450 https://pubmed.ncbi.nlm.nih.gov/28895142/
- 428 Poves I, Burdío F, Morató O. et al. Comparison of Perioperative Outcomes Between Laparoscopic and Open Approach for Pancreatoduodenectomy: The PADULAP Randomized Controlled Trial. Ann Surg 2018; 268: 731-739 https://pubmed.ncbi.nlm.nih.gov/30138162/
- 429 van Hilst J, de Rooij T, Bosscha K. et al. Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): a multicentre, patient-blinded, randomised controlled phase 2/3 trial. Lancet Gastroenterol Hepatol 2019; 4: 199-207 https://pubmed.ncbi.nlm.nih.gov/30685489/
- 430 Pędziwiatr M, Małczak P, Pisarska M. et al. Minimally invasive versus open pancreatoduodenectomy-systematic review and meta-analysis. Langenbecks Arch Surg 2017; 402: 841-851 https://pubmed.ncbi.nlm.nih.gov/28488004/
- 431 Nassour I, Choti MA, Porembka MR. et al. Robotic-assisted versus laparoscopic pancreaticoduodenectomy: oncological outcomes. Surgical Endoscopy 2018; 32: 2907-2913 https://pubmed.ncbi.nlm.nih.gov/29280014/
- 432 Schmidt CM, Glant J, Winter JM. et al. Total pancreatectomy (R0 resection) improves survival over subtotal pancreatectomy in isolated neck margin positive pancreatic adenocarcinoma. Surgery 2007; 142: 572-578 https://pubmed.ncbi.nlm.nih.gov/17950350/
- 433 Hernandez J, Mullinax J, Clark W. et al. Survival after pancreaticoduodenectomy is not improved by extending resections to achieve negative margins. Ann Surg 2009; 250: 76-80 https://pubmed.ncbi.nlm.nih.gov/19561479/
- 434 Munding J, Uhl W, Tannapfel A. [R classification and pancreatic ductal adenocarcinoma--R 0 is R 0]. Z Gastroenterol 2011; 49: 1423-1427 https://pubmed.ncbi.nlm.nih.gov/21964897/
- 435 C W, HJ M. TNM Klassifikation maligner Tumore. 2010
- 436 Shimada K, Nara S, Esaki M. et al. Intrapancreatic nerve invasion as a predictor for recurrence after pancreaticoduodenectomy in patients with invasive ductal carcinoma of the pancreas. Pancreas 2011; 40: 464-468 https://pubmed.ncbi.nlm.nih.gov/21289526/
- 437 Zacharias T, Jaeck D, Oussoultzoglou E. et al. Impact of lymph node involvement on long-term survival after R0 pancreaticoduodenectomy for ductal adenocarcinoma of the pancreas. J Gastrointest Surg 2007; 11: 350-356 https://pubmed.ncbi.nlm.nih.gov/17458610/
- 438 Wasif N, Ko CY, Farrell J. et al. Impact of tumor grade on prognosis in pancreatic cancer: Should we include grade in AJCC staging?. Annals of Surgical Oncology 2010; 17: 2312-2320 https://pubmed.ncbi.nlm.nih.gov/20422460/
- 439 Fujita T, Nakagohri T, Gotohda N. et al. Evaluation of the prognostic factors and significance of lymph node status in invasive ductal carcinoma of the body or tail of the pancreas. Pancreas 2010; 39: e48-e54 https://pubmed.ncbi.nlm.nih.gov/19910836/
- 440 Bosman FT. WHO Classification of Tumours, Volume 3. 2010;3.
- 441 Lee SE, Jang JY, Kim MA. et al. Clinical implications of immunohistochemically demonstrated lymph node micrometastasis in resectable pancreatic cancer. J Korean Med Sci 2011; 26: 881-885 http://www.ncbi.nlm.nih.gov/pubmed/21738340
- 442 Kanda M, Fujii T, Sahin TT. et al. Invasion of the splenic artery is a crucial prognostic factor in carcinoma of the body and tail of the pancreas. Ann Surg 2010; 251: 483-487 http://www.ncbi.nlm.nih.gov/pubmed/20101172
- 443 Boggi U, Del Chiaro M, Croce C. et al. Prognostic implications of tumor invasion or adhesion to peripancreatic vessels in resected pancreatic cancer. Surgery 2009; 146: 869-881 https://pubmed.ncbi.nlm.nih.gov/19744432/
- 444 Fatima J, Schnelldorfer T, Barton J. et al. Pancreatoduodenectomy for ductal adenocarcinoma: implications of positive margin on survival. Arch Surg 2010; 145: 167-172 https://pubmed.ncbi.nlm.nih.gov/20157085/
- 445 Kurahara H, Takao S, Maemura K. et al. Impact of lymph node micrometastasis in patients with pancreatic head cancer. World J Surg 2007; 31: 483-490 https://pubmed.ncbi.nlm.nih.gov/17219277/
- 446 Menon KV, Gomez D, Smith AM. et al. Impact of margin status on survival following pancreatoduodenectomy for cancer: the Leeds Pathology Protocol (LEEPP). HPB (Oxford) 2009; 11: 18-24 https://pubmed.ncbi.nlm.nih.gov/19590619/
- 447 Mitsunaga S, Hasebe T, Kinoshita T. et al. Detail histologic analysis of nerve plexus invasion in invasive ductal carcinoma of the pancreas and its prognostic impact. Am J Surg Pathol 2007; 31: 1636-1644 https://pubmed.ncbi.nlm.nih.gov/18059219/
- 448 Hishinuma S, Ogata Y, Tomikawa M. et al. Patterns of recurrence after curative resection of pancreatic cancer, based on autopsy findings. J Gastrointest Surg 2006; 10: 511-518 http://www.ncbi.nlm.nih.gov/pubmed/16627216
- 449 Oettle H, Post S, Neuhaus P. et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA 2007; 297: 267-277 http://www.ncbi.nlm.nih.gov/pubmed/17227978
- 450 Ueno H, Kosuge T, Matsuyama Y. et al. A randomised phase III trial comparing gemcitabine with surgery-only in patients with resected pancreatic cancer: Japanese Study Group of Adjuvant Therapy for Pancreatic Cancer. Br J Cancer 2009; 101: 908-915 http://www.ncbi.nlm.nih.gov/pubmed/19690548
- 451 Neoptolemos JP, Stocken DD, Friess H. et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 2004; 350: 1200-1210 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15028824
- 452 Stocken DD, Buchler MW, Dervenis C. et al. Meta-analysis of randomised adjuvant therapy trials for pancreatic cancer. Br J Cancer 2005; 92: 1372-1381 https://pubmed.ncbi.nlm.nih.gov/15812554/
- 453 Neoptolemos JP, Stocken DD, Bassi C. et al. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA 2010; 304: 1073-1081 http://www.ncbi.nlm.nih.gov/pubmed/20823433
- 454 Yoshitomi H, Togawa A, Kimura F. et al. A randomized phase II trial of adjuvant chemotherapy with uracil/tegafur and gemcitabine versus gemcitabine alone in patients with resected pancreatic cancer. Cancer 2008; 113: 2448-2456 https://pubmed.ncbi.nlm.nih.gov/18823024/
- 455 Neoptolemos JP, Palmer DH, Ghaneh P. et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. The Lancet 2017; https://pubmed.ncbi.nlm.nih.gov/28129987/
- 456 Conroy T, Hammel P, Hebbar M. et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. New England Journal of Medicine 2018; 379: 2395-5406 https://pubmed.ncbi.nlm.nih.gov/30575490/
- 457 Oettle H, Neuhaus P, Hochhaus A. et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA: Journal of the American Medical Association 2013; 310: 1473-1481 https://pubmed.ncbi.nlm.nih.gov/24104372/
- 458 Van Cutsem E, Vervenne WL, Bennouna J. et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. Journal of Clinical Oncology 2009; 27: 2231-2237 https://pubmed.ncbi.nlm.nih.gov/19307500/
- 459 Sinn M, Liersch T, Riess H. et al. CONKO-006: A randomised double-blinded phase IIb-study of additive therapy with gemcitabine + sorafenib/placebo in patients with R1 resection of pancreatic cancer – Final results. Eur J Cancer 2020; 138: 172-181 https://pubmed.ncbi.nlm.nih.gov/32890813/
- 460 Sinn M, Liersch T, Gellert K. et al. LBA18 – Conko-006: a Randomized Double-Blinded Phase Iib-Study of Adjuvant Therapy with Gemcitabine + Sorafenib/Placebo for Patients with R1-Resection of Pancreatic Cancer. Annals of Oncology 2014; 25: v1 https://pubmed.ncbi.nlm.nih.gov/32890813/
- 461 Tempero MA, Reni M, Riess H. et al. APACT: phase III, multicenter, international, open-label, randomized trial of adjuvant nab-paclitaxel plus gemcitabine (nab-P/G) vs gemcitabine (G) for surgically resected pancreatic adenocarcinoma. Journal of Clinical Oncology 2019; 37: 4000-4000
- 462 Brahmer JR, Lacchetti C, Schneider BJ. et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2018; 36: 1714-1768 https://www.ncbi.nlm.nih.gov/pubmed/29442540
- 463 Sinn M, Bahra M, Liersch T. et al. CONKO-005: Adjuvant Chemotherapy With Gemcitabine Plus Erlotinib Versus Gemcitabine Alone in Patients After R0 Resection of Pancreatic Cancer: A Multicenter Randomized Phase III Trial. Journal of Clinical Oncology 2017; 35: 3330-3337 https://pubmed.ncbi.nlm.nih.gov/28817370/
- 464 Valle JW, Palmer D, Jackson R. et al. Optimal duration and timing of adjuvant chemotherapy after definitive surgery for ductal adenocarcinoma of the pancreas: Ongoing lessons from the ESPAC-3 study. Journal of Clinical Oncology 2014; 32: 504-512 https://pubmed.ncbi.nlm.nih.gov/24419109/
- 465 Saeed H, Hnoosh D, Huang B. et al. Defining the optimal timing of adjuvant therapy for resected pancreatic adenocarcinoma: A statewide cancer registry analysis. Journal of Surgical Oncology 2016; 114: 451-455 https://pubmed.ncbi.nlm.nih.gov/27238300/
- 466 Khorana AA, Mangu PB, Berlin J. American Society of Clinical O. et al. Potentially curable pancreatic cancer: American society of clinical oncology clinical practice guideline update. Journal of Clinical Oncology 2017; 35: 2324-2328 https://pubmed.ncbi.nlm.nih.gov/28398845/
- 467 Sun W, Leong CN, Zhang Z. et al. Proposing the lymphatic target volume for elective radiation therapy for pancreatic cancer: a pooled analysis of clinical evidence. Radiat Oncol 2010; 5: 28 https://pubmed.ncbi.nlm.nih.gov/20398316/
- 468 Kalser MH, Ellenberg SS. Pancreatic cancer Adjuvant combined radiation and chemotherapy following curative resection. Arch Surg 1985; 120: 899-903 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4015380
- 469 Smeenk HG, van Eijck CH, Hop WC. et al. Long-term survival and metastatic pattern of pancreatic and periampullary cancer after adjuvant chemoradiation or observation: long-term results of EORTC trial 40891. Ann Surg 2007; 246: 734-740 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17968163
- 470 Morak MJ, van der Gaast A, Incrocci L. et al. Adjuvant intra-arterial chemotherapy and radiotherapy versus surgery alone in resectable pancreatic and periampullary cancer: a prospective randomized controlled trial. Ann Surg 2008; 248: 1031-1041 https://pubmed.ncbi.nlm.nih.gov/19092348/
- 471 Neoptolemos JP, Dunn JA, Stocken DD. et al. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. Lancet 2001; 358: 1576-1585 https://pubmed.ncbi.nlm.nih.gov/11716884/
- 472 Carter R, Stocken DD, Ghaneh P. et al. Longitudinal quality of life data can provide insights on the impact of adjuvant treatment for pancreatic cancer-Subset analysis of the ESPAC-1 data. Int J Cancer 2009; 124: 2960-2965 https://www.ncbi.nlm.nih.gov/pubmed/19330830
- 473 Klinkenbijl JH, Jeekel J, Sahmoud T. et al. Adjuvant radiotherapy and 5-fluorouracil after curative resection of cancer of the pancreas and periampullary region: phase III trial of the EORTC gastrointestinal tract cancer cooperative group. Ann Surg 1999; 230: 776-782 https://pubmed.ncbi.nlm.nih.gov/10615932/
- 474 Van Laethem JL, Hammel P, Mornex F. et al. Adjuvant gemcitabine alone versus gemcitabine-based chemoradiotherapy after curative resection for pancreatic cancer: a randomized EORTC-40013-22012/FFCD-9203/GERCOR phase II study. J Clin Oncol 2010; 28: 4450-4456 https://pubmed.ncbi.nlm.nih.gov/20837948/
- 475 Regine WF, Winter KA, Abrams R. et al. Fluorouracil-based chemoradiation with either gemcitabine or fluorouracil chemotherapy after resection of pancreatic adenocarcinoma: 5-year analysis of the US Intergroup/RTOG 9704 phase III trial. Ann Surg Oncol 2011; 18: 1319-1326 https://pubmed.ncbi.nlm.nih.gov/21499862/
- 476 Reni M, Balzano G, Aprile G. et al. Adjuvant PEFG (cisplatin, epirubicin, 5-fluorouracil, gemcitabine) or gemcitabine followed by chemoradiation in pancreatic cancer: A randomized phase II trial. Annals of Surgical Oncology 2012; 19: 2256-2263 https://pubmed.ncbi.nlm.nih.gov/22237835/
- 477 Bosset JF, Pavy JJ, Gillet M. et al. Conventional external irradiation alone as adjuvant treatment in resectable pancreatic cancer: results of a prospective study. Radiother Oncol 1992; 24: 191-194 https://www.ncbi.nlm.nih.gov/pubmed/1357725
- 478 Brunner TB, Merkel S, Grabenbauer GG. et al. Definition of elective lymphatic target volume in ductal carcinoma of the pancreatic head based on histopathologic analysis. Int J Radiat Oncol Biol Phys 2005; 62: 1021-1029 https://www.ncbi.nlm.nih.gov/pubmed/15990004
- 479 Yeo CJ, Abrams RA, Grochow LB. et al. Pancreaticoduodenectomy for pancreatic adenocarcinoma: postoperative adjuvant chemoradiation improves survival A prospective, single-institution experience. Ann Surg 1997; 225: 621-633 https://pubmed.ncbi.nlm.nih.gov/9193189/
- 480 Abrams RA, Winter KA, Safran H. et al. Results of the NRG Oncology/RTOG 0848 Adjuvant Chemotherapy Question-Erlotinib+Gemcitabine for Resected Cancer of the Pancreatic Head: A Phase II Randomized Clinical Trial. Am J Clin Oncol 2020; 43: 173-179 https://pubmed.ncbi.nlm.nih.gov/31985516/
- 481 Goodman KA, Regine WF, Dawson LA. et al. Radiation Therapy Oncology Group consensus panel guidelines for the delineation of the clinical target volume in the postoperative treatment of pancreatic head cancer. Int J Radiat Oncol Biol Phys 2012; 83: 901-908 https://www.ncbi.nlm.nih.gov/pubmed/22483737
- 482 Herman JM, Swartz MJ, Hsu CC. et al. Analysis of fluorouracil-based adjuvant chemotherapy and radiation after pancreaticoduodenectomy for ductal adenocarcinoma of the pancreas: results of a large, prospectively collected database at the Johns Hopkins Hospital. J Clin Oncol 2008; 26: 3503-3510 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18640931
- 483 Butturini G, Stocken DD, Wente MN. et al. Influence of resection margins and treatment on survival in patients with pancreatic cancer: meta-analysis of randomized controlled trials. Arch Surg 2008; 143: 75-83 https://www.ncbi.nlm.nih.gov/pubmed/18209156
- 484 Andriulli A, Festa V, Botteri E. et al. Neoadjuvant/preoperative gemcitabine for patients with localized pancreatic cancer: a meta-analysis of prospective studies. Ann Surg Oncol 2012; 19: 1644-1662 https://www.ncbi.nlm.nih.gov/pubmed/22012027
- 485 Assifi MM, Lu X, Eibl G. et al. Neoadjuvant therapy in pancreatic adenocarcinoma: a meta-analysis of phase II trials. Surgery 2011; 150: 466-473 https://www.ncbi.nlm.nih.gov/pubmed/21878232
- 486 Bradley A, Van Der Meer R. Upfront Surgery versus Neoadjuvant Therapy for Resectable Pancreatic Cancer: Systematic Review and Bayesian Network Meta-analysis. Sci Rep 2019; 9: 4354 https://www.ncbi.nlm.nih.gov/pubmed/30867522
- 487 Gillen S, Schuster T, Meyer Zum Buschenfelde C. et al. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med 2010; 7: e1000267 https://www.ncbi.nlm.nih.gov/pubmed/20422030
- 488 Palmer DH, Stocken DD, Hewitt H. et al. A randomized phase 2 trial of neoadjuvant chemotherapy in resectable pancreatic cancer: gemcitabine alone versus gemcitabine combined with cisplatin. Ann Surg Oncol 2007; 14: 2088-2096 http://www.ncbi.nlm.nih.gov/pubmed/17453298
- 489 Versteijne E, Suker M, Groothuis K. et al. Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Results of the Dutch Randomized Phase III PREOPANC Trial. J Clin Oncol 2020: JCO1902274 https://www.ncbi.nlm.nih.gov/pubmed/32105518
- 490 Barbier L, Turrini O, Gregoire E. et al. Pancreatic head resectable adenocarcinoma: preoperative chemoradiation improves local control but does not affect survival. HPB (Oxford) 2011; 13: 64-69 https://www.ncbi.nlm.nih.gov/pubmed/21159106
- 491 Takahashi S, Kinoshita T, Konishi M. et al. Borderline resectable pancreatic cancer: rationale for multidisciplinary treatment. J Hepatobiliary Pancreat Sci 2011; 18: 567-574 http://www.ncbi.nlm.nih.gov/pubmed/21331805
- 492 Chun YS, Cooper HS, Cohen SJ. et al. Significance of pathologic response to preoperative therapy in pancreatic cancer. Ann Surg Oncol 2011; 18: 3601-3607 https://www.ncbi.nlm.nih.gov/pubmed/21947697
- 493 Heinrich S, Schafer M, Weber A. et al. Neoadjuvant chemotherapy generates a significant tumor response in resectable pancreatic cancer without increasing morbidity: results of a prospective phase II trial. Ann Surg 2008; 248: 1014-1022 http://www.ncbi.nlm.nih.gov/pubmed/19092346
- 494 Lutfi W, Talamonti MS, Kantor O. et al. Perioperative chemotherapy is associated with a survival advantage in early stage adenocarcinoma of the pancreatic head. Surgery (United Kingdom) 2016; 160: 714-724 https://pubmed.ncbi.nlm.nih.gov/27422328/
- 495 Czosnyka NM, Borgert AJ, Smith TJ. Pancreatic adenocarcinoma: effects of neoadjuvant therapy on post-pancreatectomy outcomes – an American College of Surgeons National Surgical Quality Improvement Program targeted variable review. HPB (Oxford) 2017; 19: 927-932 https://www.ncbi.nlm.nih.gov/pubmed/28747265
- 496 de Geus SW, Eskander MF, Bliss LA. et al. Neoadjuvant therapy versus upfront surgery for resected pancreatic adenocarcinoma: A nationwide propensity score matched analysis. Surgery 2017; 161: 592-601 https://www.ncbi.nlm.nih.gov/pubmed/28341441
- 497 Mirkin KA, Hollenbeak CS, Wong J. Survival impact of neoadjuvant therapy in resected pancreatic cancer: A Prospective Cohort Study involving 18,332 patients from the National Cancer Data Base. International Journal of Surgery 2016; 34: 96-102 https://pubmed.ncbi.nlm.nih.gov/27573691/
- 498 Dhir M, Zenati MS, Hamad A. et al. FOLFIRINOX Versus Gemcitabine/Nab-Paclitaxel for Neoadjuvant Treatment of Resectable and Borderline Resectable Pancreatic Head Adenocarcinoma. Ann Surg Oncol 2018; 25: 1896-1903 https://www.ncbi.nlm.nih.gov/pubmed/29761331
- 499 Haeno H, Gonen M, Davis MB. et al. Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell 2012; 148: 362-375 https://www.ncbi.nlm.nih.gov/pubmed/22265421
- 500 Zhao Q, Rashid A, Gong Y. et al. Pathologic complete response to neoadjuvant therapy in patients with pancreatic ductal adenocarcinoma is associated with a better prognosis. Ann Diagn Pathol 2012; 16: 29-37 https://pubmed.ncbi.nlm.nih.gov/22050964/
- 501 Estrella JS, Rashid A, Fleming JB. et al. Post-therapy pathologic stage and survival in patients with pancreatic ductal adenocarcinoma treated with neoadjuvant chemoradiation. Cancer 2012; 118: 268-277 https://www.ncbi.nlm.nih.gov/pubmed/21735446
- 502 Versteijne E, Vogel JA, Besselink MG. et al. Meta-analysis comparing upfront surgery with neoadjuvant treatment in patients with resectable or borderline resectable pancreatic cancer. The British journal of surgery 2018; 105: 946-958 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033157/pdf/BJS-105-946.pdf
- 503 Mokdad AA, Minter RM, Hong Z. et al. Neoadjuvant Therapy Followed by Resection Versus Upfront Resection for Resectable Pancreatic Cancer: A Propensity Score Matched Analysis. Journal of Clinical Oncology 2017; 35: 515-522 https://pubmed.ncbi.nlm.nih.gov/27621388/
- 504 Versteijne E, van Dam J, Suker M. et al. Neoadjuvant Chemoradiotherapy Versus Upfront Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Long-Term Results of the Dutch Randomized PREOPANC Trial. J Clin Oncol 2022; 40 (11) 1220-1230 https://pubmed.ncbi.nlm.nih.gov/35084987/
- 505 Motoi F, Kosuge T, Ueno H. et al. Randomized phase II/III trial of neoadjuvant chemotherapy with gemcitabine and S-1 versus upfront surgery for resectable pancreatic cancer (Prep-02/JSAP05). Japanese Journal of Clinical Oncology 2019; 49: 190-194 https://pubmed.ncbi.nlm.nih.gov/30608598/
- 506 Golcher H, Brunner TB, Witzigmann H. et al. Neoadjuvant chemoradiation therapy with gemcitabine/cisplatin and surgery versus immediate surgery in resectable pancreatic cancer: results of the first prospective randomized phase II trial. Strahlenther Onkol 2015; 191: 7-16 https://www.ncbi.nlm.nih.gov/pubmed/25252602
- 507 Truty MJ, Kendrick ML, Nagorney DM. et al. Factors Predicting Response, Perioperative Outcomes, and Survival Following Total Neoadjuvant Therapy for Borderline/Locally Advanced Pancreatic Cancer. Annals of surgery 2019; https://pubmed.ncbi.nlm.nih.gov/30946090/
- 508 de Geus SW, Evans DB, Bliss LA. et al. Neoadjuvant therapy versus upfront surgical strategies in resectable pancreatic cancer: A Markov decision analysis. Eur J Surg Oncol 2016; 42: 1552-1560 https://www.ncbi.nlm.nih.gov/pubmed/27570116
- 509 Franko J, Hsu HW, Thirunavukarasu P. et al. Chemotherapy and radiation components of neoadjuvant treatment of pancreatic head adenocarcinoma: Impact on perioperative mortality and long-term survival. Eur J Surg Oncol 2017; 43: 351-357 https://www.ncbi.nlm.nih.gov/pubmed/27863846
- 510 Fisher AV, Abbott DE, Venkatesh M. et al. The Impact of Hospital Neoadjuvant Therapy Utilization on Survival Outcomes for Pancreatic Cancer. Ann Surg Oncol 2018; 25: 2661-2668 https://www.ncbi.nlm.nih.gov/pubmed/30003452
- 511 Oba A, Croce C, Hosokawa P. et al. Prognosis Based Definition of Resectability in Pancreatic Cancer: A Road Map to New Guidelines. Annals of surgery 2020; http://europepmc.org/abstract/MED/32149822
- 512 Ghaneh P, Palmer DH, Cicconi S. et al. ESPAC-5F: Four-arm, prospective, multicenter, international randomized phase II trial of immediate surgery compared with neoadjuvant gemcitabine plus capecitabine (GEMCAP) or FOLFIRINOX or chemoradiotherapy (CRT) in patients with borderline resectable pancreatic cancer. Journal of Clinical Oncology 2020; 38: 4505-4505
- 513 Hammel P, Huguet F, Van Laethem JL. et al. Effect of Chemoradiotherapy vs Chemotherapy on Survival in Patients With Locally Advanced Pancreatic Cancer Controlled After 4 Months of Gemcitabine With or Without Erlotinib: The LAP07 Randomized Clinical Trial. JAMA: Journal of the American Medical Association 2016; 315: 1844-1853 https://pubmed.ncbi.nlm.nih.gov/27139057/
- 514 Jang JY, Han Y, Lee H. et al. Oncological Benefits of Neoadjuvant Chemoradiation With Gemcitabine Versus Upfront Surgery in Patients With Borderline Resectable Pancreatic Cancer: A Prospective, Randomized, Open-label, Multicenter Phase 2/3 Trial. Annals of surgery 2018; 268: 215-222 https://pubmed.ncbi.nlm.nih.gov/29462005/
- 515 Chen X, Liu G, Wang K. et al. Neoadjuvant radiation followed by resection versus upfront resection for locally advanced pancreatic cancer patients: a propensity score matched analysis. Oncotarget 2017; 8: 47831-47840 https://www.ncbi.nlm.nih.gov/pubmed/28599299
- 516 Gemenetzis G, Groot VP, Blair AB. et al. Survival in Locally Advanced Pancreatic Cancer After Neoadjuvant Therapy and Surgical Resection. Annals of surgery 2018; https://pubmed.ncbi.nlm.nih.gov/29596120/
- 517 Hackert T, Sachsenmaier M, Hinz U. et al. Locally Advanced Pancreatic Cancer: Neoadjuvant Therapy With Folfirinox Results in Resectability in 60% of the Patients. Ann Surg 2016; 264: 457-463 https://www.ncbi.nlm.nih.gov/pubmed/27355262
- 518 Nagakawa Y, Sahara Y, Hosokawa Y. et al. Clinical Impact of Neoadjuvant Chemotherapy and Chemoradiotherapy in Borderline Resectable Pancreatic Cancer: Analysis of 884 Patients at Facilities Specializing in Pancreatic Surgery. Annals of Surgical Oncology 2019; https://pubmed.ncbi.nlm.nih.gov/30610555/
- 519 Pietrasz D, Turrini O, Vendrely V. et al. How Does Chemoradiotherapy Following Induction FOLFIRINOX Improve the Results in Resected Borderline or Locally Advanced Pancreatic Adenocarcinoma? An AGEO-FRENCH Multicentric Cohort. Annals of Surgical Oncology 2019; 26: 109-117 https://pubmed.ncbi.nlm.nih.gov/30362063/
- 520 Conroy T, Desseigne F, Ychou M. et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011; 364: 1817-1825 https://pubmed.ncbi.nlm.nih.gov/21561347/
- 521 Von Hoff DD, Ervin T, Arena FP. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. New England Journal of Medicine 2013; 369: 1691-1703 https://pubmed.ncbi.nlm.nih.gov/24131140/
- 522 Macarulla T, Pazo-Cid R, Guillén-Ponce C. et al. Phase I/II Trial to Evaluate the Efficacy and Safety of Nanoparticle Albumin-Bound Paclitaxel in Combination With Gemcitabine in Patients With Pancreatic Cancer and an ECOG Performance Status of 2. Journal of Clinical Oncology 2019; 37: 230-238 https://pubmed.ncbi.nlm.nih.gov/30523758/
- 523 Kasperk R, Klever P, Andreopoulos D. et al. Intraoperative radiotherapy for pancreatic carcinoma. Br J Surg 1995; 82: 1259-1261 http://www.ncbi.nlm.nih.gov/pubmed/7552013
- 524 Reni M, Panucci MG, Ferreri AJ. et al. Effect on local control and survival of electron beam intraoperative irradiation for resectable pancreatic adenocarcinoma. Int J Radiat Oncol Biol Phys 2001; 50: 651-658 http://www.ncbi.nlm.nih.gov/pubmed/11395232
- 525 Yamaguchi K, Nakamura K, Kobayashi K. et al. ERT following IORT improves survival of patients with resectable pancreatic cancer. Hepatogastroenterology 2005; 52: 1244-1249 https://pubmed.ncbi.nlm.nih.gov/16001672/
- 526 Messick C, Hardacre JM, McGee MF. et al. Early experience with intraoperative radiotherapy in patients with resected pancreatic adenocarcinoma. Am J Surg 2008; 195: 308-311 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18207129
- 527 Showalter TN, Rao AS, Rani Anne P. et al. Does intraoperative radiation therapy improve local tumor control in patients undergoing pancreaticoduodenectomy for pancreatic adenocarcinoma? A propensity score analysis. Ann Surg Oncol 2009; 16: 2116-2122 http://www.ncbi.nlm.nih.gov/pubmed/19437078
- 528 Ruano-Ravina A, Almazan Ortega R, Guedea F. Intraoperative radiotherapy in pancreatic cancer: a systematic review. Radiother Oncol 2008; 87: 318-325 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18199514
- 529 Zygogianni GA, Kyrgias G, Kouvaris J. et al. Intraoperative radiation therapy on pancreatic cancer patients: a review of the literature. Minerva Chir 2011; 66: 361-369 https://pubmed.ncbi.nlm.nih.gov/21873971/
- 530 Karasawa K, Sunamura M, Okamoto A. et al. Efficacy of novel hypoxic cell sensitiser doranidazole in the treatment of locally advanced pancreatic cancer: long-term results of a placebo-controlled randomised study. Radiother Oncol 2008; 87: 326-330 https://pubmed.ncbi.nlm.nih.gov/18342968/
- 531 Nagai S, Fujii T, Kodera Y. et al. Prognostic implications of intraoperative radiotherapy for unresectable pancreatic cancer. Pancreatology 2011; 11: 68-75 https://pubmed.ncbi.nlm.nih.gov/21525774/
- 532 Suker M, Beumer BR, Sadot E. et al. FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis. Lancet Oncology 2016; 17: 801-810 https://pubmed.ncbi.nlm.nih.gov/27160474/
- 533 Kunzmann V, Siveke JT, Algül H. et al. Nab-paclitaxel plus gemcitabine versus nab-paclitaxel plus gemcitabine followed by FOLFIRINOX induction chemotherapy in locally advanced pancreatic cancer (NEOLAP-AIO-PAK-0113): a multicentre, randomised, phase 2 trial. Lancet Gastroenterol Hepatol 2021; 6: 128-138 https://pubmed.ncbi.nlm.nih.gov/33338442/
- 534 Bernard V, Kim DU, San Lucas FA. et al. Circulating Nucleic Acids Are Associated With Outcomes of Patients With Pancreatic Cancer. Gastroenterology 2019; 156: 108-118 e4 https://www.ncbi.nlm.nih.gov/pubmed/30240661
- 535 Tsai S, George B, Wittmann D. et al. Importance of Normalization of CA19-9 Levels Following Neoadjuvant Therapy in Patients With Localized Pancreatic Cancer. Ann Surg 2020; 271: 740-747 https://pubmed.ncbi.nlm.nih.gov/30312198/
- 536 Akita H, Takahashi H, Ohigashi H. et al. FDG-PET predicts treatment efficacy and surgical outcome of pre-operative chemoradiation therapy for resectable and borderline resectable pancreatic cancer. Eur J Surg Oncol 2017; 43: 1061-1067 https://pubmed.ncbi.nlm.nih.gov/28389044/
- 537 Aldakkak M, Christians KK, Krepline AN. et al. Pre-treatment carbohydrate antigen 19-9 does not predict the response to neoadjuvant therapy in patients with localized pancreatic cancer. HPB: the official journal of the International Hepato Pancreato Biliary Association 2015; 17: 942-952 https://pubmed.ncbi.nlm.nih.gov/26255895/
- 538 Aoki S, Motoi F, Murakami Y. et al. Decreased serum carbohydrate antigen 19-9 levels after neoadjuvant therapy predict a better prognosis for patients with pancreatic adenocarcinoma: a multicenter case-control study of 240 patients. BMC Cancer 2019; 19: 252 https://www.ncbi.nlm.nih.gov/pubmed/30898101
- 539 Ferrone CR, Marchegiani G, Hong TS. et al. Radiological and surgical implications of neoadjuvant treatment with FOLFIRINOX for locally advanced and borderline resectable pancreatic cancer. Ann Surg 2015; 261: 12-17 https://www.ncbi.nlm.nih.gov/pubmed/25599322
- 540 Reni M, Zanon S, Pircher C. et al. Randomized phase 2 trial of nab-paclitaxel plus gemcitabine, 6 capecitabine, cisplatin (PAXG regimen) in metastatic pancreatic adenocarcinoma. Annals of Oncology 2017; 28: v252 https://pubmed.ncbi.nlm.nih.gov/30220407/
- 541 Mallinson CN, Rake MO, Cocking JB. et al. Chemotherapy in pancreatic cancer: results of a controlled, prospective, randomised, multicentre trial. Br Med J 1980; 281: 1589-1591 https://pubmed.ncbi.nlm.nih.gov/7004559/
- 542 Palmer KR, Kerr M, Knowles G. et al. Chemotherapy prolongs survival in inoperable pancreatic carcinoma. Br J Surg 1994; 81: 882-885 https://pubmed.ncbi.nlm.nih.gov/8044610/
- 543 Glimelius B, Hoffman K, Sjoden PO. et al. Chemotherapy improves survival and quality of life in advanced pancreatic and biliary cancer. Ann Oncol 1996; 7: 593-600 https://pubmed.ncbi.nlm.nih.gov/8879373/
- 544 Yip D, Karapetis C, Strickland A. et al. Chemotherapy and radiotherapy for inoperable advanced pancreatic cancer. Cochrane Database Syst Rev 2006; 3: CD002093 https://pubmed.ncbi.nlm.nih.gov/16855985/
- 545 Wainberg Z, Melisi D, Macarulla T. et al. NALIRIFOX versus nab-paclitaxel and gemcitabine in treatment-naive patients with metastatic pancreatic ductal adenocarcinoma (NAPOLI 3): a randomised, open-label, phase 3 trial. Lancet 2023; 402: 1272-1281 https://pubmed.ncbi.nlm.nih.gov/37708904/
- 546 Burris HA, Moore MJ, Andersen J. et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997; 15: 2403-2413 https://www.ncbi.nlm.nih.gov/pubmed/9196156
- 547 Sohal DPS, Mangu PB, Khorana AA. et al. Metastatic Pancreatic Cancer: American Society of Clinical Oncology Clinical Practice Guideline. Journal of Clinical Oncology 2016; 34: 2784-2796 https://pubmed.ncbi.nlm.nih.gov/27247222/
- 548 Sultana A, Smith CT, Cunningham D. et al. Meta-analyses of chemotherapy for locally advanced and metastatic pancreatic cancer. Journal of Clinical Oncology 2007; 25: 2607-2615 https://pubmed.ncbi.nlm.nih.gov/17577041/
- 549 Conroy T, Desseigne F, Ychou M. et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011; 364: 1817-1825 https://www.ncbi.nlm.nih.gov/pubmed/21561347
- 550 Louvet C, Labianca R, Hammel P. et al. Gemcitabine in combination with oxaliplatin compared with gemcitabine alone in locally advanced or metastatic pancreatic cancer: results of a GERCOR and GISCAD phase III trial. J Clin Oncol 2005; 23: 3509-3516 https://pubmed.ncbi.nlm.nih.gov/15908661/
- 551 Heinemann V, Quietzsch D, Gieseler F. et al. Randomized phase III trial of gemcitabine plus cisplatin compared with gemcitabine alone in advanced pancreatic cancer. J Clin Oncol 2006; 24: 3946-3952 https://pubmed.ncbi.nlm.nih.gov/16921047/
- 552 Berlin JD, Catalano P, Thomas JP. et al. Phase III study of gemcitabine in combination with fluorouracil versus gemcitabine alone in patients with advanced pancreatic carcinoma: Eastern Cooperative Oncology Group Trial E2297. J Clin Oncol 2002; 20: 3270-3275 https://pubmed.ncbi.nlm.nih.gov/12149301/
- 553 Van Cutsem E, van de Velde H, Karasek P. et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol 2004; 22: 1430-1438 https://pubmed.ncbi.nlm.nih.gov/15084616/
- 554 Storniolo AM, Enas NH, Brown CA. et al. An investigational new drug treatment program for patients with gemcitabine: results for over 3000 patients with pancreatic carcinoma. Cancer 1999; 85: 1261-1268 https://pubmed.ncbi.nlm.nih.gov/10189130/
- 555 Herrmann R, Bodoky G, Rushstaller T. et al. Gemcitabine (G) plus capecitabine (C) versus G alone in locally advanced or metastatic pancreatic cancer: a randomized phase III study of the Swiss Group for Clinical Cancer Research (SAKK) and the Central European Cooperative Oncology Group (CECOG). J Clin Oncol 2005; 23: A4010 https://pubmed.ncbi.nlm.nih.gov/17538165/
- 556 Moore MJ, Goldstein D, Hamm J. et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology 2007; 25: 1960-1966 https://pubmed.ncbi.nlm.nih.gov/17452677/
- 557 Heinemann V, Boeck S, Hinke A. et al. Meta-analysis of randomized trials: evaluation of benefit from gemcitabine-based combination chemotherapy applied in advanced pancreatic cancer. BMC Cancer 2008; 8: 82 http://www.ncbi.nlm.nih.gov/pubmed/18373843
- 558 Goldstein D, El-Maraghi RH, Hammel P. et al. nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. J Natl Cancer Inst 2015; 107 https://www.ncbi.nlm.nih.gov/pubmed/25638248
- 559 Gargiulo P, Dietrich D, Herrmann R. et al. Predicting mortality and adverse events in patients with advanced pancreatic cancer treated with palliative gemcitabine-based chemotherapy in a multicentre phase III randomized clinical trial: the APC-SAKK risk scores. Ther Adv Med Oncol 2019; 11 https://www.ncbi.nlm.nih.gov/pubmed/30636977
- 560 Cunningham D, Chau I, Stocken DD. et al. Phase III randomized comparison of gemcitabine versus gemcitabine plus capecitabine in patients with advanced pancreatic cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2009; 27: 5513-5518 https://pubmed.ncbi.nlm.nih.gov/19858379/
- 561 Romanus D, Kindler HL, Archer L. et al. Does health-related quality of life improve for advanced pancreatic cancer patients who respond to gemcitabine? Analysis of a randomized phase III trial of the cancer and leukemia group B (CALGB 80303). Journal of Pain and Symptom Management 2012; 43: 205-217 https://pubmed.ncbi.nlm.nih.gov/22104618/
- 562 Poplin E, Feng Y, Berlin J. et al. Phase III, randomized study of gemcitabine and oxaliplatin versus gemcitabine (fixed-dose rate infusion) compared with gemcitabine (30-minute infusion) in patients with pancreatic carcinoma E6201: a trial of the Eastern Cooperative Oncology Group. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2009; 27: 3778-3785 https://pubmed.ncbi.nlm.nih.gov/19581537/
- 563 Colucci G, Labianca R, Di Costanzo F. et al. Randomized phase III trial of gemcitabine plus cisplatin compared with single-agent gemcitabine as first-line treatment of patients with advanced pancreatic cancer: the GIP-1 study. J Clin Oncol 2010; 28: 1645-1651 https://www.ncbi.nlm.nih.gov/pubmed/20194854
- 564 Herrmann R, Bodoky G, Ruhstaller T. et al. Gemcitabine plus capecitabine compared with gemcitabine alone in advanced pancreatic cancer: a randomized, multicenter, phase III trial of the Swiss Group for Clinical Cancer Research and the Central European Cooperative Oncology Group. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2007; 25: 2212-2217 https://pubmed.ncbi.nlm.nih.gov/17538165/
- 565 Philip PA, Benedetti J, Corless CL. et al. Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest oncology group-directed intergroup trial S0205. Journal of Clinical Oncology 2010; 28: 3605-3610
- 566 Okusaka T, Miyakawa H, Fujii H. et al. Updated results from GEST study: a randomized, three-arm phase III study for advanced pancreatic cancer. Journal of Cancer Research and Clinical Oncology 2017; 143: 1053-1059 https://pubmed.ncbi.nlm.nih.gov/28210843/
- 567 Yamaue H, Shimizu A, Hagiwara Y. et al. Multicenter, randomized, open-label Phase II study comparing S-1 alternate-day oral therapy with the standard daily regimen as a first-line treatment in patients with unresectable advanced pancreatic cancer. Cancer Chemotherapy and Pharmacology 2017; 79: 813-823 https://pubmed.ncbi.nlm.nih.gov/28251282/
- 568 Gourgou-Bourgade S, Bascoul-Mollevi C, Desseigne F. et al. Impact of FOLFIRINOX compared with gemcitabine on quality of life in patients with metastatic pancreatic cancer: results from the PRODIGE 4/ACCORD 11 randomized trial. J Clin Oncol 2013; 31: 23-29 https://www.ncbi.nlm.nih.gov/pubmed/23213101
- 569 Thibodeau S, Voutsadakis IA. FOLFIRINOX chemotherapy in metastatic pancreatic cancer: A systematic review and meta-analysis of retrospective and phase II studies. Journal of Clinical Medicine 2018; 7: 7 https://pubmed.ncbi.nlm.nih.gov/29300345/
- 570 Stein SM, James ES, Deng Y. et al. Final analysis of a phase II study of modified FOLFIRINOX in locally advanced and metastatic pancreatic cancer. British Journal of Cancer 2016; 114: 737-743 https://pubmed.ncbi.nlm.nih.gov/27022826/
- 571 Maisey N, Chau I, Cunningham D. et al. Multicenter randomized phase III trial comparing protracted venous infusion (PVI) fluorouracil (5-FU) with PVI 5-FU plus mitomycin in inoperable pancreatic cancer. J Clin Oncol 2002; 20: 3130-3136 https://pubmed.ncbi.nlm.nih.gov/12118027/
- 572 Reni M, Cordio S, Milandri C. et al. Gemcitabine versus cisplatin, epirubicin, fluorouracil, and gemcitabine in advanced pancreatic cancer: a randomised controlled multicentre phase III trial. Lancet Oncol 2005; 6: 369-376 https://pubmed.ncbi.nlm.nih.gov/15925814/
- 573 Ducreux M, Rougier P, Pignon JP. et al. A randomised trial comparing 5-FU with 5-FU plus cisplatin in advanced pancreatic carcinoma. Ann Oncol 2002; 13: 1185-1191 https://www.ncbi.nlm.nih.gov/pubmed/12181240
- 574 Dahan L, Bonnetain F, Ychou M. et al. Combination 5-fluorouracil, folinic acid and cisplatin (LV5FU2-CDDP) followed by gemcitabine or the reverse sequence in metastatic pancreatic cancer: final results of a randomised strategic phase III trial (FFCD 0301). Gut 2010; 59: 1527-1534 https://www.ncbi.nlm.nih.gov/pubmed/20947887
- 575 Tu C, Zheng F, Wang JY. et al. An Updated Meta-analysis and System Review: is Gemcitabine+Fluoropyrimidine in Combination a Better Therapy Versus Gemcitabine Alone for Advanced and Unresectable Pancreatic Cancer?. Asian Pacific journal of cancer prevention: APJCP 2015; 16: 5681-5686 https://pubmed.ncbi.nlm.nih.gov/26320435/
- 576 Trouilloud I, Dupont-Gossard AC. et al. Fixed-dose rate gemcitabine alone or alternating with FOLFIRI3 (irinotecan, leucovorin and fluorouracil) in the first-line treatment of patients with metastatic pancreatic adenocarcinoma: an AGEO randomised phase II study (FIRGEM). European journal of cancer (Oxford, England: 1990) 2014; 50: 3116-3124 https://pubmed.ncbi.nlm.nih.gov/25454414/
- 577 Bachet JB, Hammel P, Desrame J. et al. Nab-paclitaxel plus either gemcitabine or simplified leucovorin and fluorouracil as first-line therapy for metastatic pancreatic adenocarcinoma (AFUGEM GERCOR): a non-comparative, multicentre, open-label, randomised phase 2 trial. Lancet Gastroenterol Hepatol 2017; 2: 337-346 https://www.ncbi.nlm.nih.gov/pubmed/28397697
- 578 Zhang S, Xie W, Zou Y. et al. First-line chemotherapy regimens for locally advanced and metastatic pancreatic adenocarcinoma: A Bayesian analysis. Cancer Management and Research 2018; 10: 5965-5978 https://pubmed.ncbi.nlm.nih.gov/30538546/
- 579 Chin V, Nagrial A, Sjoquist K. et al. Chemotherapy and radiotherapy for advanced pancreatic cancer. Cochrane Database Syst Rev 2018; 3: CD011044 https://www.ncbi.nlm.nih.gov/pubmed/29557103
- 580 Li Q, Yan H, Liu W. et al. Efficacy and safety of gemcitabine-fluorouracil combination therapy in the management of advanced pancreatic cancer: A meta-analysis of randomized controlled trials. PLoS ONE 2014; 9: e104346 https://pubmed.ncbi.nlm.nih.gov/25093849/
- 581 Di Costanzo F, Carlini P, Doni L. et al. Gemcitabine with or without continuous infusion 5-FU in advanced pancreatic cancer: a randomised phase II trial of the Italian oncology group for clinical research (GOIRC). Br J Cancer 2005; 93: 185-189 https://www.ncbi.nlm.nih.gov/pubmed/15986036
- 582 Scheithauer W, Schüll B, Ulrich-Pur H. et al. Biweekly high-dose gemcitabine alone or in combination with capecitabine in patients with metastatic pancreatic adenocarcinoma: a randomized phase II trial. Ann Oncol 2003; 14: 97-104 https://pubmed.ncbi.nlm.nih.gov/12488300/
- 583 Nakai Y, Isayama H, Sasaki T. et al. A multicentre randomised phase II trial of gemcitabine alone vs gemcitabine and S-1 combination therapy in advanced pancreatic cancer: GEMSAP study. Br J Cancer 2012; 106: 1934-1939 https://pubmed.ncbi.nlm.nih.gov/22555398/
- 584 Ueno H, Ioka T, Ikeda M. et al. Randomized phase III study of gemcitabine plus S-1, S-1 alone, or gemcitabine alone in patients with locally advanced and metastatic pancreatic cancer in Japan and Taiwan: GEST study. Journal of Clinical Oncology 2013; 31: 1640-1648 https://pubmed.ncbi.nlm.nih.gov/23547081/
- 585 Sudo K, Ishihara T, Hirata N. et al. Randomized controlled study of gemcitabine plus S-1 combination chemotherapy versus gemcitabine for unresectable pancreatic cancer. Cancer Chemother Pharmacol 2014; 73: 389-396 https://pubmed.ncbi.nlm.nih.gov/24322377/
- 586 Rocha Lima CM, Green MR, Rotche R. et al. Irinotecan plus gemcitabine results in no survival advantage compared with gemcitabine monotherapy in patients with locally advanced or metastatic pancreatic cancer despite increased tumor response rate. J Clin Oncol 2004; 22: 3776-3783
- 587 Stathopoulos GP, Syrigos K, Aravantinos G. et al. A multicenter phase III trial comparing irinotecan-gemcitabine (IG) with gemcitabine (G) monotherapy as first-line treatment in patients with locally advanced or metastatic pancreatic cancer. Br J Cancer 2006; 95: 587-592 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2360678/pdf/95-6603301a.pdf
- 588 Oettle H, Richards D, Ramanathan RK. et al. A phase III trial of pemetrexed plus gemcitabine versus gemcitabine in patients with unresectable or metastatic pancreatic cancer. Ann Oncol 2005; 16: 1639-1645 https://pubmed.ncbi.nlm.nih.gov/16087696/
- 589 Abou-Alfa GK, Letourneau R, Harker G. et al. Randomized phase III study of exatecan and gemcitabine compared with gemcitabine alone in untreated advanced pancreatic cancer. J Clin Oncol 2006; 24: 4441-4447 https://pubmed.ncbi.nlm.nih.gov/16983112/
- 590 Kulke MH, Tempero MA, Niedzwiecki D. et al. Randomized phase II study of gemcitabine administered at a fixed dose rate or in combination with cisplatin, docetaxel, or irinotecan in patients with metastatic pancreatic cancer: CALGB 89904. J Clin Oncol 2009; 27: 5506-5512 https://pubmed.ncbi.nlm.nih.gov/19858396/
- 591 Hu J, Zhao G, Wang HX. et al. A meta-analysis of gemcitabine containing chemotherapy for locally advanced and metastatic pancreatic adenocarcinoma. Journal of Hematology and Oncology 2011; 4 http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L51343155
- 592 Wang Y, Hu GF, Zhang QQ. et al. Efficacy and safety of gemcitabine plus erlotinib for locally advanced or metastatic pancreatic cancer: A systematic review and meta-analysis. Drug Design, Development and Therapy 2016; 10: 1961-1972 https://pubmed.ncbi.nlm.nih.gov/27358556/
- 593 Heinemann V, Vehling-Kaiser U, Waldschmidt D. et al. Gemcitabine plus erlotinib followed by capecitabine versus capecitabine plus erlotinib followed by gemcitabine in advanced pancreatic cancer: final results of a randomised phase 3 trial of the “Arbeitsgemeinschaft Internistische Onkologie” (AIO-PK0104). Gut 2013; 62: 751-759 https://pubmed.ncbi.nlm.nih.gov/22773551/
- 594 Haas M, Siveke JT, Schenk M. et al. Efficacy of gemcitabine plus erlotinib in rash-positive patients with metastatic pancreatic cancer selected according to eligibility for FOLFIRINOX: A prospective phase II study of the Arbeitsgemeinschaft Internistische Onkologie-T. European Journal of Cancer 2018; 94: 95-103 https://pubmed.ncbi.nlm.nih.gov/29549862/
- 595 Eltawil KM, Renfrew PD, Molinari M. Meta-analysis of phase III randomized trials of molecular targeted therapies for advanced pancreatic cancer. HPB (Oxford) 2012; 14: 260-268 https://www.ncbi.nlm.nih.gov/pubmed/22404265
- 596 Ciliberto D, Botta C, Correale P. et al. Role of gemcitabine-based combination therapy in the management of advanced pancreatic cancer: a meta-analysis of randomised trials. Eur J Cancer 2013; 49: 593-603 https://www.ncbi.nlm.nih.gov/pubmed/22989511
- 597 Tong M, Wang J, Zhang H. et al. Efficacy and safety of gemcitabine plus anti-angiogenesis therapy for advanced pancreatic cancer: A systematic review and meta-analysis of clinical randomized phase III trials. Journal of Cancer 2019; 10: 968-978 https://pubmed.ncbi.nlm.nih.gov/30854103/
- 598 Ciliberto D, Staropoli N, Chiellino S. et al. Systematic review and meta-analysis on targeted therapy in advanced pancreatic cancer. Pancreatology 2016; 16: 249-258 https://www.ncbi.nlm.nih.gov/pubmed/26852170
- 599 Bramhall SR, Schulz J, Nemunaitis J. et al. A double-blind placebo-controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer. Br J Cancer 2002; 87: 161-167 https://pubmed.ncbi.nlm.nih.gov/12107836/
- 600 Kindler HL, Niedzwiecki D, Hollis D. et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol 2010; 28: 3617-3622 http://www.ncbi.nlm.nih.gov/pubmed/20606091
- 601 Kindler HL, Ioka T, Richel DJ. et al. Axitinib plus gemcitabine versus placebo plus gemcitabine in patients with advanced pancreatic adenocarcinoma: A double-blind randomised phase 3 study. The Lancet Oncology 2011; 12: 256-262
- 602 Goncalves A, Gilabert M, Francois E. et al. BAYPAN study: a double-blind phase III randomized trial comparing gemcitabine plus sorafenib and gemcitabine plus placebo in patients with advanced pancreatic cancer. Ann Oncol 2012; 23: 2799-2805 https://www.ncbi.nlm.nih.gov/pubmed/22771827
- 603 Rougier P, Riess H, Manges R. et al. Randomised, placebo-controlled, double-blind, parallel-group phase III study evaluating aflibercept in patients receiving first-line treatment with gemcitabine for metastatic pancreatic cancer. European Journal of Cancer 2013; 49: 2633-2642 https://pubmed.ncbi.nlm.nih.gov/23642329/
- 604 Fuchs CS, Azevedo S, Okusaka T. et al. A phase 3 randomized, double-blind, placebo-controlled trial of ganitumab or placebo in combination with gemcitabine as first-line therapy for metastatic adenocarcinoma of the pancreas: the GAMMA trial. Annals of oncology: official journal of the European Society for Medical Oncology 2015; 26: 921-927 https://pubmed.ncbi.nlm.nih.gov/25609246/
- 605 Deplanque G, Demarchi M, Hebbar M. et al. A randomized, placebo-controlled phase III trial of masitinib plus gemcitabine in the treatment of advanced pancreatic cancer. Ann Oncol 2015; 26: 1194-1200 https://www.ncbi.nlm.nih.gov/pubmed/25858497
- 606 Hurwitz HI, Uppal N, Wagner SA. et al. Randomized, Double-Blind, Phase II Study of Ruxolitinib or Placebo in Combination With Capecitabine in Patients With Metastatic Pancreatic Cancer for Whom Therapy With Gemcitabine Has Failed. Journal of Clinical Oncology 2015; 33: 4039-4047 https://pubmed.ncbi.nlm.nih.gov/26351344/
- 607 Yamaue H, Tsunoda T, Tani M. et al. Randomized phase II/III clinical trial of elpamotide for patients with advanced pancreatic cancer: PEGASUS-PC Study. Cancer Science 2015; 106: 883-890 https://pubmed.ncbi.nlm.nih.gov/25867139/
- 608 Middleton G, Palmer DH, Greenhalf W. et al. Vandetanib plus gemcitabine versus placebo plus gemcitabine in locally advanced or metastatic pancreatic carcinoma (ViP): a prospective, randomised, double-blind, multicentre phase 2 trial. Lancet Oncology 2017; https://pubmed.ncbi.nlm.nih.gov/28259610/
- 609 Schultheis B, Reuter D, Ebert MP. et al. Gemcitabine combined with the monoclonal antibody nimotuzumab is an active first-line regimen in KRAS wildtype patients with locally advanced or metastatic pancreatic cancer: a multicenter, randomized phase IIb study. Annals of oncology: official journal of the European Society for Medical Oncology 2017; 28: 2429-2435 https://pubmed.ncbi.nlm.nih.gov/28961832/
- 610 Evans TRJ, Van Cutsem E, Moore MJ. et al. Phase 2 placebo-controlled, double-blind trial of dasatinib added to gemcitabine for patients with locally-advanced pancreatic cancer. Ann Oncol 2017; 28: 354-361 https://www.ncbi.nlm.nih.gov/pubmed/27998964
- 611 Melisi D, Garcia-Carbonero R, Macarulla T. et al. Galunisertib plus gemcitabine vs gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. British Journal of Cancer 2018; 119: 1208-1214 https://pubmed.ncbi.nlm.nih.gov/30318515/
- 612 Schwartzberg LS, Arena FP, Bienvenu BJ. et al. A randomized, open-label, safety and exploratory efficacy study of Kanglaite Injection (KLTi) plus gemcitabine versus gemcitabine in patients with advanced pancreatic cancer. Journal of Cancer 2017; 8: 1872-1883 https://pubmed.ncbi.nlm.nih.gov/28819385/
- 613 Golan T, Geva R, Richards D. et al. LY2495655, an antimyostatin antibody, in pancreatic cancer: a randomized, phase 2 trial. J Cachexia Sarcopenia Muscle 2018; 9: 871-879 https://www.ncbi.nlm.nih.gov/pubmed/30051975
- 614 Reni M, Cereda S, Milella M. et al. Maintenance sunitinib or observation in metastatic pancreatic adenocarcinoma: A phase II randomised trial. European Journal of Cancer 2013; 49: 3609-3615 https://pubmed.ncbi.nlm.nih.gov/23899530/
- 615 O’Reilly EM, Lee JW, Zalupski M. et al. Randomized, Multicenter, Phase II Trial of Gemcitabine and Cisplatin With or Without Veliparib in Patients With Pancreas Adenocarcinoma and a Germline BRCA/PALB2 Mutation. J Clin Oncol 2020; 38: 1378-1388 https://www.ncbi.nlm.nih.gov/pubmed/31976786
- 616 Golan T, Hammel P, Reni M. et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N Engl J Med 2019; 381: 317-327 https://www.ncbi.nlm.nih.gov/pubmed/31157963
- 617 Holter S, Borgida A, Dodd A. et al. Germline BRCA Mutations in a Large Clinic-Based Cohort of Patients With Pancreatic Adenocarcinoma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2015; 33: 3124-3129 https://pubmed.ncbi.nlm.nih.gov/25940717/
- 618 Walsh CS. Two decades beyond BRCA1/2: Homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy?. Gynecologic Oncology 2015; 137: 343-350 https://pubmed.ncbi.nlm.nih.gov/25725131/
- 619 Bao Z, Cao C, Geng X. et al. Effectiveness and safety of poly (ADP-ribose) polymerase inhibitors in cancer therapy: A systematic review and meta-analysis. Oncotarget 2016; 7: 7629-7639 https://www.ncbi.nlm.nih.gov/pubmed/26399274
- 620 Strickler J, Satake H, George T. et al. Sotorasib in KRAS p.G12C-Mutated Advanced Pancreatic Cancer. N Engl J Med 2023; 388 (01) 33-43 https://pubmed.ncbi.nlm.nih.gov/36546651/
- 621 Bekaii-Saab T, Yaeger R, Spira A. et al. Adagrasib in Advanced Solid Tumors Harboring a KRAS G12C Mutation. J Clin Oncol 2023; 41 (25) 4097-4106 https://pubmed.ncbi.nlm.nih.gov/37099736/
- 622 Le DT, Durham JN, Smith KN. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357: 409-413 https://pubmed.ncbi.nlm.nih.gov/28596308/
- 623 Humphris JL, Patch AM, Nones K. et al. Hypermutation In Pancreatic Cancer. Gastroenterology 2017; 152: 68 https://pubmed.ncbi.nlm.nih.gov/27856273/
- 624 Johansson H, Andersson R, Bauden M. et al. Immune checkpoint therapy for pancreatic cancer. World J Gastroenterol 2016; 22: 9457-9476 https://pubmed.ncbi.nlm.nih.gov/27920468/
- 625 Azad NS, Gray RJ, Overman MJ. et al. Nivolumab Is Effective in Mismatch Repair-Deficient Noncolorectal Cancers: Results From Arm Z1D-A Subprotocol of the NCI-MATCH (EAY131) Study. J Clin Oncol 2020; 38: 214-222 https://www.ncbi.nlm.nih.gov/pubmed/31765263
- 626 Ribas A. Releasing the Brakes on Cancer Immunotherapy. N Engl J Med 2015; 373: 1490-1492 https://pubmed.ncbi.nlm.nih.gov/26348216/
- 627 Hu ZI, Shia J, Stadler ZK. et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: Challenges and recommendations. Clinical Cancer Research 2018; 24: 1326-1336 https://clincancerres.aacrjournals.org/content/clincanres/24/6/1326.full.pdf
- 628 Le DT, Uram JN, Wang H. et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 2015; 372: 2509-2520 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481136/pdf/nihms698054.pdf
- 629 Marabelle A, Le DT, Ascierto PA. et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J Clin Oncol 2020; 38: 1-10 https://www.ncbi.nlm.nih.gov/pubmed/31682550
- 630 Taïeb J, Sayah L, Heinrich K. et al. Efficacy of immune checkpoint inhibitors in microsatellite unstable/mismatch repair-deficient advanced pancreatic adenocarcinoma: an AGEO European Cohort. Eur J Cancer 2023; 188: 90-97 https://pubmed.ncbi.nlm.nih.gov/37229836/
- 631 Wang M, Shi SB, Qi JL. et al. S-1 plus CIK as second-line treatment for advanced pancreatic cancer. Med Oncol 2013; 30: 747 https://pubmed.ncbi.nlm.nih.gov/24122257/
- 632 Middleton G, Silcocks P, Cox T. et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncology 2014; 15: 829-840 https://pubmed.ncbi.nlm.nih.gov/24954781/
- 633 Nishida S, Ishikawa T, Egawa S. et al. Combination gemcitabine and WT1 peptide vaccination improves progression-free survival in advanced pancreatic ductal adenocarcinoma: A phase II randomized study. Cancer Immunology Research 2018; 6: 320-331 https://pubmed.ncbi.nlm.nih.gov/29358173/
- 634 Le DT, Picozzi VJ, Ko AH. et al. Results from a Phase IIb, Randomized, Multicenter Study of GVAX Pancreas and CRS-207 Compared with Chemotherapy in Adults with Previously Treated Metastatic Pancreatic Adenocarcinoma (ECLIPSE Study). Clinical cancer research: an official journal of the American Association for Cancer Research 2019; https://pubmed.ncbi.nlm.nih.gov/31126960/
- 635 Ulrich-Pur H, Raderer M, Verena Kornek G. et al. Irinotecan plus raltitrexed vs raltitrexed alone in patients with gemcitabine-pretreated advanced pancreatic adenocarcinoma. British journal of cancer 2003; 88: 1180-1184 https://pubmed.ncbi.nlm.nih.gov/12698181
- 636 Ciuleanu TE, Pavlovsky AV, Bodoky G. et al. A randomised Phase III trial of glufosfamide compared with best supportive care in metastatic pancreatic adenocarcinoma previously treated with gemcitabine. Eur J Cancer 2009; 45: 1589-1596 https://www.ncbi.nlm.nih.gov/pubmed/19188061
- 637 Pelzer U, Schwaner I, Stieler J. et al. Best supportive care (BSC) versus oxaliplatin, folinic acid and 5-fluorouracil (OFF) plus BSC in patients for second-line advanced pancreatic cancer: a phase III-study from the German CONKO-study group. Eur J Cancer 2011; 47: 1676-1681 https://pubmed.ncbi.nlm.nih.gov/21565490/
- 638 Oettle H, Riess H, Stieler JM. et al. Second-line oxaliplatin, folinic acid, and fluorouracil versus folinic acid and fluorouracil alone for gemcitabine-refractory pancreatic cancer: outcomes from the CONKO-003 trial. J Clin Oncol 2014; 32: 2423-2429 https://pubmed.ncbi.nlm.nih.gov/24982456/
- 639 Gill S, Ko YJ, Cripps C. et al. PANCREOX: A Randomized Phase III Study of Fluorouracil/Leucovorin With or Without Oxaliplatin for Second-Line Advanced Pancreatic Cancer in Patients Who Have Received Gemcitabine-Based Chemotherapy. J Clin Oncol 2016; 34: 3914-3920 https://pubmed.ncbi.nlm.nih.gov/27621395/
- 640 Wang-Gillam A, Chung-Pin L, Bodoky G. et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. The Lancet 2016; 387 North American Edition: 545-557 https://pubmed.ncbi.nlm.nih.gov/26615328/
- 641 Macarulla T, Blanc JF, Wang-Gillam A. et al. “Liposomal irinotecan and 5-fluorouracil/leucovorin in older patients with metastatic pancreatic cancer” A subgroup analysis of the pivotal NAPOLI-1 trial. Journal of Geriatric Oncology 2019; https://pubmed.ncbi.nlm.nih.gov/30842038/
- 642 Wang-Gillam A, Hubner RA, Siveke JT. et al. NAPOLI-1 phase 3 study of liposomal irinotecan in metastatic pancreatic cancer: Final overall survival analysis and characteristics of long-term survivors. European Journal of Cancer 2019; 108: 78-87 https://pubmed.ncbi.nlm.nih.gov/30654298/
- 643 Chen LT, Siveke JT, Wang-Gillam A. et al. Survival with nal-IRI (liposomal irinotecan) plus 5-fluorouracil and leucovorin versus 5-fluorouracil and leucovorin in per-protocol and non-per-protocol populations of NAPOLI-1: Expanded analysis of a global phase 3 trial. Eur J Cancer 2018; 105: 71-78 https://www.ncbi.nlm.nih.gov/pubmed/30414528
- 644 Hubner RA, Cubillo A, Blanc JF. et al. Quality of life in metastatic pancreatic cancer patients receiving liposomal irinotecan plus 5-fluorouracil and leucovorin. European Journal of Cancer 2019; 106: 24-33 https://pubmed.ncbi.nlm.nih.gov/30458340/
- 645 Berk V, Ozdemir N, Ozkan M. et al. XELOX vs FOLFOX4 as second line chemotherapy in advanced pancreatic cancer. Hepato-gastroenterology 2012; 59: 2635-2639 https://pubmed.ncbi.nlm.nih.gov/22534542/
- 646 Bodoky G, Timcheva C, Spigel D. et al. A phase II open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy[corrected] [published erratum appears in INVEST NEW DRUGS 2012; 30(3):1273-3]. Investigational New Drugs 2012; 30: 1216-1223 https://pubmed.ncbi.nlm.nih.gov/21594619/
- 647 Minimally invasive test may detect early pancreatic cancer. AORN Journal 2007; 86: 1053-1053
- 648 Chung V, McDonough S, Philip PA. et al. Effect of Selumetinib and MK-2206 vs Oxaliplatin and Fluorouracil in Patients With Metastatic Pancreatic Cancer After Prior Therapy: SWOG S1115 Study Randomized Clinical Trial. JAMA Oncol 2017; 3: 516-522 https://www.ncbi.nlm.nih.gov/pubmed/27978579
- 649 Ioka T, Ueno M, Ueno H. et al. TAS-118 (S-1 plus leucovorin) versus S-1 in patients with gemcitabine-refractory advanced pancreatic cancer: a randomised, open-label, phase 3 study (GRAPE trial). European Journal of Cancer 2019; 106: 78-88 https://pubmed.ncbi.nlm.nih.gov/30471651/
- 650 Hurwitz H, Van CE, Bendell J. et al. Ruxolitinib + capecitabine in advanced/metastatic pancreatic cancer after disease progression/intolerance to first-line therapy: JANUS 1 and 2 randomized phase III studies. Investigational New Drugs 2018; 36: 683-695 https://pubmed.ncbi.nlm.nih.gov/29508247/
- 651 Herman JM, Chang DT, Goodman KA. et al. Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer (0008543X) 2015; 121: 1128-1137 https://pubmed.ncbi.nlm.nih.gov/25538019/
- 652 Loehrer PJ, Feng Y, Cardenes H. et al. Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: an Eastern Cooperative Oncology Group trial. J Clin Oncol 2011; 29: 4105-4112 https://pubmed.ncbi.nlm.nih.gov/21969502/
- 653 Chauffert B, Mornex F, Bonnetain F. et al. Phase III trial comparing intensive induction chemoradiotherapy (60 Gy, infusional 5-FU and intermittent cisplatin) followed by maintenance gemcitabine with gemcitabine alone for locally advanced unresectable pancreatic cancer Definitive results of the 2000-01 FFCD/SFRO study. Ann Oncol 2008; 19: 1592-1599 https://www.ncbi.nlm.nih.gov/pubmed/18467316
- 654 Ambe C, Fulp W, Springett G. et al. A Meta-analysis of Randomized Clinical Trials of Chemoradiation Therapy in Locally Advanced Pancreatic Cancer. J Gastrointest Cancer 2015; 46: 284-290 https://www.ncbi.nlm.nih.gov/pubmed/26018826
- 655 Krishnan S, Chadha AS, Suh Y. et al. Focal Radiation Therapy Dose Escalation Improves Overall Survival in Locally Advanced Pancreatic Cancer Patients Receiving Induction Chemotherapy and Consolidative Chemoradiation. Int J Radiat Oncol Biol Phys 2016; 94: 755-765 https://pubmed.ncbi.nlm.nih.gov/26972648/
- 656 Ma SJ, Prezzano KM, Hermann GM. et al. Dose escalation of radiation therapy with or without induction chemotherapy for unresectable locally advanced pancreatic cancer. Radiat Oncol 2018; 13: 214 https://pubmed.ncbi.nlm.nih.gov/30400962/
- 657 Chuong MD, Springett GM, Freilich JM. et al. Stereotactic body radiation therapy for locally advanced and borderline resectable pancreatic cancer is effective and well tolerated. International Journal of Radiation Oncology, Biology, Physics 2013; 86: 516-522 https://pubmed.ncbi.nlm.nih.gov/23562768/
- 658 de Geus SWL, Eskander MF, Kasumova GG. et al. Stereotactic body radiotherapy for unresected pancreatic cancer: A nationwide review. Cancer 2017; 123: 4158-4167 https://www.ncbi.nlm.nih.gov/pubmed/28708929
- 659 Balaban EP, Mangu PB, Khorana AA. et al. Locally Advanced, Unresectable Pancreatic Cancer: American Society of Clinical Oncology Clinical Practice Guideline. Journal of Clinical Oncology 2016; 34: 2654-2668 https://pubmed.ncbi.nlm.nih.gov/27247216/
- 660 Palta M, Godfrey D, Goodman KA. et al. Radiation Therapy for Pancreatic Cancer: Executive Summary of an ASTRO Clinical Practice Guideline. Pract Radiat Oncol 2019; 9: 322-332 https://pubmed.ncbi.nlm.nih.gov/31474330/
- 661 Zhu CP, Shi J, Chen YX. et al. Gemcitabine in the chemoradiotherapy for locally advanced pancreatic cancer: a meta-analysis. Radiother Oncol 2011; 99: 108-113 https://pubmed.ncbi.nlm.nih.gov/21571383/
- 662 Hurt CN, Falk S, Crosby T. et al. Long-term results and recurrence patterns from SCALOP: a phase II randomised trial of gemcitabine- or capecitabine-based chemoradiation for locally advanced pancreatic cancer. Br J Cancer 2017; 116: 1264-1270 https://pubmed.ncbi.nlm.nih.gov/28376080/
- 663 Stiel S, Matthes M, Bertram L. et al. [Validation of the new version of the minimal documentation system (MIDOS) for patients in palliative care: the German version of the edmonton symptom assessment scale (ESAS)]. Schmerz 2010; 24 (06) 596-604 https://pubmed.ncbi.nlm.nih.gov/20882300/
- 664 Bruera E, Kuehn N, Miller M. et al. The Edmonton Symptom Assessment System (ESAS): a simple method for the assessment of palliative care patients. J Palliat Care 1991; 7 (02) 6-9 https://pubmed.ncbi.nlm.nih.gov/1714502/
- 665 Schildmann E, Groeneveld E, Denzel J. et al. Discovering the hidden benefits of cognitive interviewing in two languages: The first phase of a validation study of the Integrated Palliative care Outcome Scale. Palliat Med 2016; 30 (06) 599-610 https://pubmed.ncbi.nlm.nih.gov/26415736/
- 666 Velikova G, Booth L, Smith A. et al. Measuring quality of life in routine oncology practice improves communication and patient well-being: a randomized controlled trial. J Clin Oncol 2004; 22 (04) 714-724 https://pubmed.ncbi.nlm.nih.gov/14966096/
- 667 Mackay T, Latenstein A, Sprangers M. et al. Relationship Between Quality of Life and Survival in Patients With Pancreatic and Periampullary Cancer: A Multicenter Cohort Analysis. J Natl Compr Canc Netw 2020; 18 (10) 1354-1363 https://pubmed.ncbi.nlm.nih.gov/33022643/
- 668 Muscaritoli M, Arends J, Bachmann P. et al. ESPEN practical guideline: Clinical Nutrition in cancer. Clin Nutr 2021; 40 (05) 2898-2913 https://pubmed.ncbi.nlm.nih.gov/33946039/
- 669 Arends J, Bachmann P, Baracos V. et al. ESPEN guidelines on nutrition in cancer patients. Clin Nutr 2017; 36 (01) 11-48 https://pubmed.ncbi.nlm.nih.gov/27637832/
- 670 Hendifar A, Petzel M, Zimmers T. et al. Pancreas Cancer-Associated Weight Loss. Oncologist 2019; 24 (05) 691-701 https://pubmed.ncbi.nlm.nih.gov/30591550/
- 671 Roeland E, Bohlke K, Baracos V. et al. Management of Cancer Cachexia: ASCO Guideline. J Clin Oncol 2020; 38 (21) 2438-2453 https://pubmed.ncbi.nlm.nih.gov/32432946/
- 672 Schuetz P, Seres D, Lobo D. et al. Management of disease-related malnutrition for patients being treated in hospital. Lancet 2021; 398: 1927-1938 https://pubmed.ncbi.nlm.nih.gov/34656286/
- 673 Schuetz P, Fehr R, Baechli V. et al. Individualised nutritional support in medical inpatients at nutritional risk: a randomised clinical trial. Lancet 2019; 393: 2312-2321 https://pubmed.ncbi.nlm.nih.gov/31030981/
- 674 Kaegi-Braun N, Schuetz P, Mueller B. et al. Association of Nutritional Support With Clinical Outcomes in Malnourished Cancer Patients: A Population-Based Matched Cohort Study. Front Nutr 2020; 7: 603370 https://pubmed.ncbi.nlm.nih.gov/33777987/
- 675 Pathanki A, Attard J, Bradley E. et al. Pancreatic exocrine insufficiency after pancreaticoduodenectomy: Current evidence and management. World J Gastrointest Pathophysiol 2020; 11 (02) 20-31 https://pubmed.ncbi.nlm.nih.gov/32318312/
- 676 Roberts K, Schrem H, Hodson J. et al. Pancreas exocrine replacement therapy is associated with increased survival following pancreatoduodenectomy for periampullary malignancy. HPB (Oxford) 2017; 19 (10) 859-867 https://pubmed.ncbi.nlm.nih.gov/28711377/
- 677 Bruno M, Haverkort E, Tijssen G. et al. Placebo controlled trial of enteric coated pancreatin microsphere treatment in patients with unresectable cancer of the pancreatic head region. Gut 1998; 42 (01) 92-96 https://pubmed.ncbi.nlm.nih.gov/9505892/
- 678 Woo S, Joo J, Kim S. et al. Efficacy of pancreatic exocrine replacement therapy for patients with unresectable pancreatic cancer in a randomized trial. Pancreatology 16 (06) 1099-1105 https://pubmed.ncbi.nlm.nih.gov/27618657/
- 679 Saito T, Nakai Y, Isayama H. et al. A Multicenter Open-Label Randomized Controlled Trial of Pancreatic Enzyme Replacement Therapy in Unresectable Pancreatic Cancer. Pancreas 2018; 47 (07) 800-806 https://pubmed.ncbi.nlm.nih.gov/29851751/
- 680 Iglesia D, Avci B, Kiriukova M. et al. Pancreatic exocrine insufficiency and pancreatic enzyme replacement therapy in patients with advanced pancreatic cancer: A systematic review and meta-analysis. United European Gastroenterol J 2020; 8 (09) 1115-1125 https://pubmed.ncbi.nlm.nih.gov/32631175/
- 681 Gianotti L, Besselink M, Sandini M. et al. Nutritional support and therapy in pancreatic surgery: A position paper of the International Study Group on Pancreatic Surgery (ISGPS). Surgery 2018; 164 (05) 1035-1048 https://pubmed.ncbi.nlm.nih.gov/30029989/
- 682 Marimuthu K, Varadhan K, Ljungqvist O. et al. A meta-analysis of the effect of combinations of immune modulating nutrients on outcome in patients undergoing major open gastrointestinal surgery. Ann Surg 2012; 255 (06) 1060-1068 https://pubmed.ncbi.nlm.nih.gov/22549749/
- 683 Moss AC, Morris E, Mac Mathuna P. Palliative biliary stents for obstructing pancreatic carcinoma. Cochrane Database Syst Rev 2006; CD004200 https://pubmed.ncbi.nlm.nih.gov/16437477/
- 684 Hausegger KA, Thurnher S, Bodendorfer G. et al. Treatment of malignant biliary obstruction with polyurethane-covered Wallstents. Am J Roentgenol 1998; 170: 403-408 https://pubmed.ncbi.nlm.nih.gov/9456954/
- 685 Isayama H, Komatsu Y, Tsujino T. et al. A prospective randomised study of “covered” versus “uncovered” diamond stents for the management of distal malignant biliary obstruction. Gut 2004; 53: 729-734 https://pubmed.ncbi.nlm.nih.gov/15082593/
- 686 Speer AG, Cotton PB, Russell RC. et al. Randomised trial of endoscopic versus percutaneous stent insertion in malignant obstructive jaundice. Lancet 1987; 2: 57-62 https://pubmed.ncbi.nlm.nih.gov/2439854/
- 687 Aranha GV, Prinz RA, Greenlee HB. Biliary enteric bypass for benign and malignant disease. Am Surg 1987; 53: 403-406 https://pubmed.ncbi.nlm.nih.gov/3605859/
- 688 DiFronzo LA, Egrari S, O’Connell TX. Choledochoduodenostomy for palliation in unresectable pancreatic cancer. Arch Surg 1998; 133: 820-825 https://pubmed.ncbi.nlm.nih.gov/9711954/
- 689 Urbach DR, Bell CM, Swanstrom LL. et al. Cohort study of surgical bypass to the gallbladder or bile duct for the palliation of jaundice due to pancreatic cancer. Ann Surg 2003; 237: 86-93 https://pubmed.ncbi.nlm.nih.gov/12496534/
- 690 Baron T. Expandable metal stents for the treatment of cancerous obstruction of the gastrointestinal tract. N Engl J Med 2001; 344 (22) 1681-1687 https://pubmed.ncbi.nlm.nih.gov/11386268/
- 691 Camúñez F, Echenagusia A, Simó G. et al. Malignant colorectal obstruction treated by means of self-expanding metallic stents: effectiveness before surgery and in palliation. Radiology 2000; 216 (02) 492-497 https://pubmed.ncbi.nlm.nih.gov/10924576/
- 692 Law W, Choi H, Lee Y. et al. Palliation for advanced malignant colorectal obstruction by self-expanding metallic stents: prospective evaluation of outcomes. Dis Colon Rectum 2004; 47 (01) 39-43 https://pubmed.ncbi.nlm.nih.gov/14719149/
- 693 Lowe A, Beckett C, Jowett S. et al. Self-expandable metal stent placement for the palliation of malignant gastroduodenal obstruction: experience in a large, single, UK centre. Clin Radiol 2007; 62 (08) 738-744 https://pubmed.ncbi.nlm.nih.gov/17604761//
- 694 Nassif T, Prat F, Meduri B. et al. Endoscopic palliation of malignant gastric outlet obstruction using self-expandable metallic stents: results of a multicenter study. Endoscopy 2003; 35 (06) 483-489 https://pubmed.ncbi.nlm.nih.gov/12783345//
- 695 Telford J, Carr-Locke D, Baron T. et al. Palliation of patients with malignant gastric outlet obstruction with the enteral Wallstent: outcomes from a multicenter study. Gastrointest Endosc 2004; 60 (06) 916-920 https://pubmed.ncbi.nlm.nih.gov/15605006//
- 696 Watt A, Faragher I, Griffin T. et al. Self-expanding metallic stents for relieving malignant colorectal obstruction: a systematic review. Ann Surg 2007; 246 (01) 24-30 https://pubmed.ncbi.nlm.nih.gov/
- 697 Espinel J, Sanz O, Vivas S. et al. Malignant gastrointestinal obstruction: endoscopic stenting versus surgical palliation. Surg Endosc 2006; 20 (07) 1083-1087 https://pubmed.ncbi.nlm.nih.gov/
- 698 Fiori E, Lamazza A, Volpino P. et al. Palliative management of malignant antro-pyloric strictures Gastroenterostomy vs endoscopic stenting A randomized prospective trial. Anticancer Res 24 (01) 269-271 https://pubmed.ncbi.nlm.nih.gov/15015607//
- 699 Laval G, Marcelin-Benazech B, Guirimand F. et al. Recommendations for bowel obstruction with peritoneal carcinomatosis. J Pain Symptom Manage 2014; 48 (01) 75-91 https://pubmed.ncbi.nlm.nih.gov/24798105//
- 700 Shaw C, Bassett R, Fox P. et al. Palliative venting gastrostomy in patients with malignant bowel obstruction and ascites. Ann Surg Oncol 2013; 20 (02) 497-505 https://pubmed.ncbi.nlm.nih.gov/22965572//
- 701 Rath K, Loseth D, Muscarella P. et al. Outcomes following percutaneous upper gastrointestinal decompressive tube placement for malignant bowel obstruction in ovarian cancer. Gynecol Oncol 2013; 129 (01) 103-106 https://pubmed.ncbi.nlm.nih.gov/23369942//
- 702 DeEulis T, Yennurajalingam S. Venting Gastrostomy at Home for Symptomatic Management of Bowel Obstruction in Advanced/Recurrent Ovarian Malignancy: A Case Series. J Palliat Med 2015; 18 (08) 722-728 https://pubmed.ncbi.nlm.nih.gov/26218581//
- 703 Dittrich A, Schubert B, Kramer M. et al. Benefits and risks of a percutaneous endoscopic gastrostomy (PEG) for decompression in patients with malignant gastrointestinal obstruction. Support Care Cancer 2017; 25 (09) 2849-2856 https://pubmed.ncbi.nlm.nih.gov/28434096//
- 704 Issaka R, Shapiro D, Parikh N. et al. Palliative venting percutaneous endoscopic gastrostomy tube is safe and effective in patients with malignant obstruction. Surg Endosc 2014; 28 (05) 1668-1673 https://pubmed.ncbi.nlm.nih.gov/24366189//
- 705 Lilley E, Scott J, Goldberg J. et al. Survival, Healthcare Utilization, and End-of-life Care Among Older Adults With Malignancy-associated Bowel Obstruction: Comparative Study of Surgery, Venting Gastrostomy, or Medical Management. Ann Surg 2018; 267 (04) 692-699 https://pubmed.ncbi.nlm.nih.gov/28151799//
- 706 Pinard K, Goring T, Egan B. et al. Drainage Percutaneous Endoscopic Gastrostomy for Malignant Bowel Obstruction in Gastrointestinal Cancers: Prognosis and Implications for Timing of Palliative Intervention. J Palliat Med 2017; 20 (07) 774-778 https://pubmed.ncbi.nlm.nih.gov/28437204//
- 707 Teriaky A, Gregor J, Chande N. Percutaneous endoscopic gastrostomy tube placement for end-stage palliation of malignant gastrointestinal obstructions. Saudi J Gastroenterol 18 (02) 95-98 https://pubmed.ncbi.nlm.nih.gov/22421713//
- 708 Campagnutta E, Cannizzaro R, Gallo A. et al. Palliative treatment of upper intestinal obstruction by gynecological malignancy: the usefulness of percutaneous endoscopic gastrostomy. Gynecol Oncol 1996; 62 (01) 103-105 https://pubmed.ncbi.nlm.nih.gov/8690280//
- 709 Laval G, Arvieux C, Stefani L. et al. Protocol for the treatment of malignant inoperable bowel obstruction: a prospective study of 80 cases at Grenoble University Hospital Center. J Pain Symptom Manage 2006; 31 (06) 502-512 https://pubmed.ncbi.nlm.nih.gov/16793490//
- 710 Campagnutta E, Cannizzaro R. Percutaneous endoscopic gastrostomy (PEG) in palliative treatment of non-operable intestinal obstruction due to gynecologic cancer: a review. Eur J Gynaecol Oncol 2000; 21 (04) 397-402 https://pubmed.ncbi.nlm.nih.gov/11055494//
- 711 Frere C, Bournet B, Gourgou S. et al. Incidence of Venous Thromboembolism in Patients With Newly Diagnosed Pancreatic Cancer and Factors Associated With Outcomes. Gastroenterology 2020; 158 (05) 1346-1358.e4 https://pubmed.ncbi.nlm.nih.gov/31843588//
- 712 Tempero M, Malafa M, Al-Hawary M. et al. Pancreatic Adenocarcinoma, Version 22021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19 (04) 439-457 https://pubmed.ncbi.nlm.nih.gov/33845462//
- 713 Maraveyas A, Waters J, Roy R. et al. Gemcitabine versus gemcitabine plus dalteparin thromboprophylaxis in pancreatic cancer. European Journal of Cancer 2012; 48: 1283-1292
- 714 Pelzer U, Opitz B, Deutschinoff G. et al. Efficacy of Prophylactic Low–Molecular Weight Heparin for Ambulatory Patients With Advanced Pancreatic Cancer: Outcomes From the CONKO-004 Trial. Journal of Clinical Oncology 2015; 33: 2028-2034
- 715 Farge D, Frere C, Connors J. et al. 2019 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer. Lancet Oncol 2019; 20 (10) e566-e581 https://pubmed.ncbi.nlm.nih.gov/31492632/
- 716 Key NS, Khorana AA, Kuderer NM. et al. Venous Thromboembolism Prophylaxis and Treatment in Patients With Cancer: ASCO Clinical Practice Guideline Update. Journal of Clinical Oncology 2020; 38: 496-520
- 717 Lyman GH, Carrier M, Ay C. et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: prevention and treatment in patients with cancer. Blood Advances 2021; 5: 927-974
- 718 Tun NM, Guevara E, Oo TH. Benefit and risk of primary thromboprophylaxis in ambulatory patients with advanced pancreatic cancer receiving chemotherapy. Blood Coagulation & Fibrinolysis 2016; 27: 270-274
- 719 Tempero MA, Arnoletti JP, Behrman SW. et al. Pancreatic Adenocarcinoma, version 22012: featured updates to the NCCN Guidelines. J Natl Compr Canc Netw 2012; 10: 703-713 https://pubmed.ncbi.nlm.nih.gov/22679115/
- 720 Ducreux M, Cuhna AS, Caramella C. et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 2015; 26: v56-v68
- 721 Khorana AA, McKernin SE, Berlin J. et al. Potentially Curable Pancreatic Adenocarcinoma: ASCO Clinical Practice Guideline Update. Journal of Clinical Oncology 2019; 37: 2082-2088
- 722 Elmi A, Murphy J, Hedgire S. et al. Post-Whipple imaging in patients with pancreatic ductal adenocarcinoma: association with overall survival: a multivariate analysis. Abdominal Radiology 2017; 42: 2101-2107
- 723 Groot VP, Daamen LA, Hagendoorn J. et al. Use of imaging during symptomatic follow-up after resection of pancreatic ductal adenocarcinoma. Journal of Surgical Research 2018; 221: 152-160
- 724 Daamen LA, Groot VP, Besselink MG. et al. Detection, Treatment, and Survival of Pancreatic Cancer Recurrence in the Netherlands. Annals of Surgery 2020; 275: 769-775
- 725 Daamen LA, Groot VP, Heerkens HD. et al. Systematic review on the role of serum tumor markers in the detection of recurrent pancreatic cancer. HPB 2018; 20: 297-304
- 726 Samawi HH, Yin Y, Lim HJ. et al. Primary Care Versus Oncology-Based Surveillance Following Adjuvant Chemotherapy in Resected Pancreatic Cancer. Journal of Gastrointestinal Cancer 2017; 49: 429-436
- 727 Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft DK. Entwicklung von leitlinienbasierten Qualitätsindikatoren Methodenpapier für das Leitlinienprogramm Onkologie, Version 21. 2017 http://www.leitlinienprogramm-onkologie.de/methodik/informationen-zur-methodik/