Subscribe to RSS
DOI: 10.1055/a-2290-5373
Künstliche Intelligenz bei lamellierenden Keratoplastiken
Article in several languages: English | deutschAuthors

Zusammenfassung
Das Training von künstlicher Intelligenz (KI) wird auch in der Vorderabschnittschirurgie populärer. Zunehmend werden auch Studien zu lamellierenden Keratoplastiken veröffentlicht. Insbesondere die Möglichkeit der nicht invasiven und hochauflösenden Bildgebungstechnologie der optischen Kohärenztomografie prädestiniert die lamellierenden Keratoplastiken zur Anwendung von KI. Obwohl technisch einfach durchführbar, existieren bisher nur wenige Studien zum Einsatz von KI zur Optimierung lamellierender Keratoplastiken. Die vorhandenen Studien konzentrieren sich dabei vor allem auf die Vorhersagewahrscheinlichkeit eines Rebubblings bei DMEK und DSAEK bzw. auf deren Transplantatadhärenz sowie auf die Formation einer Big Bubble bei der DALK. Zudem ist die automatisierte Erfassung von Routineparametern wie Hornhautödem, Endothelzelldichte oder Größe der Transplantatablösung mittels KI inzwischen möglich. Die Optimierung der lamellierenden Keratoplastiken mittels KI birgt ein großes Potenzial. Dennoch bestehen Limitationen der veröffentlichten Algorithmen insofern, dass diese bisher nur eingeschränkt zwischen Zentren, Chirurgen sowie unterschiedlichen Geräteherstellern übertragbar sind.
Publication History
Received: 14 February 2024
Accepted: 17 March 2024
Accepted Manuscript online:
19 March 2024
Article published online:
28 June 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References/Literatur
- 1
Hüttmann G,
Lankenau E,
Schulz-Wackerbarth C.
et al.
[Optical coherence tomography: from retina imaging to intraoperative use – a review].
Klin Monbl Augenheilkd 2009; 226: 958-964
Reference Ris Wihthout Link
- 2
Hayashi T,
Händel A,
Matthaei M,
Cursiefen C,
Siebelmann S.
Die OCT des vorderen Augenabschnitts bei Hornhauttransplantationen. In:
Heindl LM,
Siebelmann S.
Hrsg.
Optische Kohärenztomographie des vorderen Augenabschnitts: Atlas. Berlin, Heidelberg:
Springer; 2023: 165-191
Reference Ris Wihthout Link
- 3
Melles GR.
Posterior lamellar keratoplasty: DLEK to DSEK to DMEK. Cornea 2006; 25: 879-881
Reference Ris Wihthout Link
- 4
Ashworth N,
De Champlain AF,
Kain N.
A review of multi-source feedback focusing on psychometrics, pitfalls and some possible
solutions. SN Social Sciences 2021; 1: 1-12
Reference Ris Wihthout Link
- 5
Hayashi T,
Masumoto H,
Tabuchi H.
et al.
A deep learning approach for successful big-bubble formation prediction in deep anterior
lamellar keratoplasty. Sci Rep 2021; 11: 18559
Reference Ris Wihthout Link
- 6
Pan J,
Liu W,
Ge P.
et al.
Real-time segmentation and tracking of excised corneal contour by deep neural networks
for DALK surgical navigation. Comput Methods Programs Biomed 2020; 197: 105679
Reference Ris Wihthout Link
- 7
Muijzer M,
Hoven C,
Frank L.
et al.
A machine learning approach to explore predictors of graft detachment following posterior
lamellar keratoplasty: a nationwide registry study. Sci Rep 2022; 12: 17705
Reference Ris Wihthout Link
- 8
Siebelmann S,
Kolb K,
Scholz P.
et al.
The Cologne rebubbling study: a reappraisal of 624 rebubblings after Descemet membrane
endothelial keratoplasty. Br J Ophthalmol 2021; 105: 1082-1086
Reference Ris Wihthout Link
- 9
Patefield A,
Meng Y,
Airaldi M.
et al.
Deep Learning Using Preoperative AS-OCT Predicts Graft Detachment in DMEK. Transl
Vis Sci Technol 2023; 12: 14
Reference Ris Wihthout Link
- 10
Treder M,
Lauermann JL,
Alnawaiseh M.
et al.
Using deep learning in automated detection of graft detachment in Descemet membrane
endothelial keratoplasty: a pilot study. Cornea 2019; 38: 157-161
Reference Ris Wihthout Link
- 11
Hayashi T,
Tabuchi H,
Masumoto H.
et al.
A deep learning approach in rebubbling after Descemetʼs membrane endothelial keratoplasty.
Eye Contact Lens 2020; 46: 121-126
Reference Ris Wihthout Link
- 12
Hayashi T,
Iliasian RM,
Matthaei M.
et al.
Transferability of an artificial intelligence algorithm predicting rebubblings after
descemet membrane endothelial keratoplasty. Cornea 2023; 42: 544-548
Reference Ris Wihthout Link
- 13
Vigueras-Guillén JP,
van Rooij J,
Engel A.
et al.
Deep learning for assessing the corneal endothelium from specular microscopy images
up to 1 year after ultrathin-DSAEK surgery. Transl Vis Sci Technol 2020; 9: 49
Reference Ris Wihthout Link
- 14
Bitton K,
Zéboulon P,
Ghazal W.
et al.
Deep Learning Model for the Detection of Corneal Edema Before Descemet Membrane Endothelial
Keratoplasty on Optical Coherence Tomography Images. Transl Vis Sci Technol 2022;
11: 19
Reference Ris Wihthout Link
- 15
Heslinga FG,
Alberti M,
Pluim JP.
et al.
Quantifying graft detachment after Descemetʼs membrane endothelial keratoplasty with
deep convolutional neural networks. Transl Vis Sci Technol 2020; 9: 48
Reference Ris Wihthout Link
- 16
OʼBrien RC,
Ishwaran H,
Szczotka-Flynn LB.
et al.
Random survival forests analysis of intraoperative complications as predictors of
Descemet stripping automated endothelial keratoplasty graft failure in the Cornea
Preservation Time Study. JAMA Ophthalmol 2021; 139: 191-197
Reference Ris Wihthout Link
- 17
Yousefi S,
Takahashi H,
Hayashi T.
Predicting the likelihood of need for future keratoplasty intervention using artificial
intelligence. Ocul Surf 2020; 18: 320-325
Reference Ris Wihthout Link