Z Gastroenterol 2023; 61(01): 76-82
DOI: 10.1055/a-1993-3519
Übersicht

Angeborene und erworbene Immunität im Kontext der nichtalkoholischen Fettlebererkrankung

Innate and adaptive immunity in the context of non-alcoholic fatty liver disease
1   Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany (Ringgold ID: RIN9177)
› Author Affiliations

Zusammenfassung

Die nichtalkoholische Fettlebererkrankung (NAFLD) ist ein wachsendes Gesundheitsproblem. Das Verständnis der immunologischen Vorgänge in der Leber während der Ausbildung sowie Progression der Fettlebererkrankung hin zu einer Fettleberentzündung (NASH), Leberzirrhose oder hepatozellulärem Karzinom (HCC) kann dabei zum besseren Erkrankungsverständnis, Identifizierung von klinisch relevanten Subgruppen sowie therapeutischen Ansätzen genutzt werden. Die Interaktion zwischen angeborenem und erworbenem Immunsystem scheint dabei von großer Wichtigkeit zu sein. Dieser Übersichtsartikel beleuchtet die verschiedenen immunologischen Vorgänge in der NAFLD bis hin zur Progression zum HCC, geordnet nach den wesentlichen Zellgruppen des angeborenen und erworbenen Immunsystems.

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a growing health problem. Understanding the immunological processes in the liver during the development and progression of fatty liver disease to fatty liver inflammation (NASH), liver cirrhosis or hepatocellular carcinoma (HCC) can be used to better understand the disease, identify clinically relevant subgroups and therapeutic approaches. The interaction between innate and acquired immune systems seems to be of great importance. This review article highlights the various immunological processes in NAFLD leading up to progression to HCC, organized according to the major cell groups of the innate and acquired immune systems.



Publication History

Received: 04 October 2022

Accepted after revision: 04 December 2022

Article published online:
09 January 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Estes C, Anstee QM, Arias-Loste MT. et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. Journal of hepatology 2018; 69 (04) 896-904
  • 2 Estes C, Razavi H, Loomba R. et al. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology (Baltimore, Md) 2018; 67 (01) 123-133
  • 3 Yki-Järvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2014; 2 (11) 901-910
  • 4 van Kleef LA, Sonneveld MJ, Kavousi M. et al. Fatty liver disease is not associated with increased mortality in the elderly: A prospective cohort study. Hepatology (Baltimore, Md) 2022;
  • 5 Chalasani N, Younossi Z, Lavine JE. et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology (Baltimore, Md) 2018; 67 (01) 328-357
  • 6 Roeb E, Canbay A, Bantel H. et al. Aktualisierte S2k-Leitlinie nicht-alkoholische Fettlebererkrankung der Deutschen Gesellschaft für Gastroenterologie, Verdauungs-und Stoffwechselkrankheiten (DGVS)–April 2022–AWMF-Registernummer: 021–025. Zeitschrift fur Gastroenterologie 2022; 60 (09) 1346-1421
  • 7 Huby T, Gautier EL. Immune cell-mediated features of non-alcoholic steatohepatitis. Nature reviews Immunology 2022; 22 (07) 429-443
  • 8 Heinrich B, Brown ZJ, Diggs LP. et al. Steatohepatitis Impairs T-cell-Directed Immunotherapies Against Liver Tumors in Mice. Gastroenterology 2021; 160 (01) 331-345 e6
  • 9 Dudek M, Pfister D, Donakonda S. et al. Auto-aggressive CXCR6(+) CD8 T cells cause liver immune pathology in NASH. Nature 2021; 592: 444-449
  • 10 Ma C, Kesarwala AH, Eggert T. et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 2016; 531: 253-257
  • 11 Brown ZJ, Heinrich B, Greten TF. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol 2018; 15 (09) 536-554
  • 12 Im YR, Hunter H, de Gracia Hahn D. et al. A Systematic Review of Animal Models of NAFLD Finds High-Fat, High-Fructose Diets Most Closely Resemble Human NAFLD. Hepatology (Baltimore, Md) 2021; 74 (04) 1884-1901
  • 13 Machado MV, Michelotti GA, Xie G. et al. Mouse models of diet-induced nonalcoholic steatohepatitis reproduce the heterogeneity of the human disease. PloS one 2015; 10 (05) e0127991
  • 14 Tsuchida T, Lee YA, Fujiwara N. et al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. Journal of hepatology 2018; 69 (02) 385-395
  • 15 Alisi A, Carsetti R, Nobili V. Pathogen- or damage-associated molecular patterns during nonalcoholic fatty liver disease development. Hepatology (Baltimore, Md) 2011; 54 (05) 1500-1502
  • 16 Arrese M, Cabrera D, Kalergis AM. et al. Innate Immunity and Inflammation in NAFLD/NASH. Digestive diseases and sciences 2016; 61 (05) 1294-1303
  • 17 Dallio M, Sangineto M, Romeo M. et al. Immunity as Cornerstone of Non-Alcoholic Fatty Liver Disease: The Contribution of Oxidative Stress in the Disease Progression. International journal of molecular sciences 2021; 22 (01) 436
  • 18 Shi FD, Ljunggren HG, La Cava A. et al. Organ-specific features of natural killer cells. Nature reviews Immunology 2011; 11 (10) 658-671
  • 19 Chen Y, Tian Z. Roles of Hepatic Innate and Innate-Like Lymphocytes in Nonalcoholic Steatohepatitis. Front Immunol 2020; 11: 1500
  • 20 Riggan L, Freud AG, O’Sullivan TE. True Detective: Unraveling Group 1 Innate Lymphocyte Heterogeneity. Trends in immunology 2019;
  • 21 Vivier E, Artis D, Colonna M. et al. Innate Lymphoid Cells: 10 Years On. Cell 2018; 174 (05) 1054-1066
  • 22 Zhang X, Shen J, Man K. et al. CXCL10 plays a key role as an inflammatory mediator and a non-invasive biomarker of non-alcoholic steatohepatitis. Journal of hepatology 2014; 61 (06) 1365-1375
  • 23 Fan Y, Zhang W, Wei H. et al. Hepatic NK cells attenuate fibrosis progression of non-alcoholic steatohepatitis in dependent of CXCL10-mediated recruitment. Liver International 2020; 40 (03) 598-608
  • 24 Stiglund N, Strand K, Cornillet M. et al. Retained NK Cell Phenotype and Functionality in Non-alcoholic Fatty Liver Disease. Front Immunol 2019; 10: 1255
  • 25 Cuff AO, Sillito F, Dertschnig S. et al. The Obese Liver Environment Mediates Conversion of NK Cells to a Less Cytotoxic ILC1-Like Phenotype. Front Immunol 2019; 10: 2180
  • 26 Gao Y, Souza-Fonseca-Guimaraes F, Bald T. et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nature immunology 2017; 18 (09) 1004-1015
  • 27 Heinrich B, Gertz EM, Schäffer AA. et al. The tumour microenvironment shapes innate lymphoid cells in patients with hepatocellular carcinoma. Gut 2022; 71 (06) 1161-1175
  • 28 McHedlidze T, Waldner M, Zopf S. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 2013; 39 (02) 357-371
  • 29 Forkel M, Berglin L, Kekalainen E. et al. Composition and functionality of the intrahepatic innate lymphoid cell-compartment in human nonfibrotic and fibrotic livers. European journal of immunology 2017; 47 (08) 1280-1294
  • 30 Wang S, Li J, Wu S. et al. Type 3 innate lymphoid cell: a new player in liver fibrosis progression. Clinical science (London, England : 1979) 2018; 132 (24) 2565-2582
  • 31 Hamaguchi M, Okamura T, Fukuda T. et al. Group 3 Innate Lymphoid Cells Protect Steatohepatitis From High-Fat Diet Induced Toxicity. Front Immunol 2021; 12: 648754
  • 32 O’Sullivan TE, Rapp M, Fan X. et al. Adipose-Resident Group 1 Innate Lymphoid Cells Promote Obesity-Associated Insulin Resistance. Immunity 2016; 45 (02) 428-441
  • 33 Wang X, Ota N, Manzanillo P. et al. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 2014; 514: 237-241
  • 34 Tran S, Baba I, Poupel L. et al. Impaired Kupffer Cell Self-Renewal Alters the Liver Response to Lipid Overload during Non-alcoholic Steatohepatitis. Immunity 2020; 53 (03) 627-640.e5
  • 35 Obstfeld AE, Sugaru E, Thearle M. et al. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 2010; 59 (04) 916-925
  • 36 Kruger AJ, Fuchs BC, Masia R. et al. Prolonged cenicriviroc therapy reduces hepatic fibrosis despite steatohepatitis in a diet-induced mouse model of nonalcoholic steatohepatitis. Hepatol Commun 2018; 2 (05) 529-545
  • 37 Lefebvre E, Moyle G, Reshef R. et al. Antifibrotic Effects of the Dual CCR2/CCR5 Antagonist Cenicriviroc in Animal Models of Liver and Kidney Fibrosis. PloS one 2016; 11 (06) e0158156
  • 38 Malehmir M, Pfister D, Gallage S. et al. Platelet GPIbalpha is a mediator and potential interventional target for NASH and subsequent liver cancer. Nature medicine 2019; 25 (04) 641-655
  • 39 Ma C, Fu Q, Diggs LP. et al. Platelets control liver tumor growth through P2Y12-dependent CD40L release in NAFLD. Cancer cell 2022; 40 (09) 986-998.e5
  • 40 Hwang S, Yun H, Moon S. et al. Role of Neutrophils in the Pathogenesis of Nonalcoholic Steatohepatitis. Front Endocrinol (Lausanne) 2021; 12: 751802
  • 41 van der Windt DJ, Sud V, Zhang H. et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology (Baltimore, Md) 2018; 68 (04) 1347-1360
  • 42 Hwang S, He Y, Xiang X. et al. Interleukin-22 Ameliorates Neutrophil-Driven Nonalcoholic Steatohepatitis Through Multiple Targets. Hepatology (Baltimore, Md) 2020; 72 (02) 412-429
  • 43 Deczkowska A, David E, Ramadori P. et al. XCR1(+) type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. Nature medicine 2021; 27 (06) 1043-1054
  • 44 Henning JR, Graffeo CS, Rehman A. et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology (Baltimore, Md) 2013; 58 (02) 589-602
  • 45 Heier EC, Meier A, Julich-Haertel H. et al. Murine CD103(+) dendritic cells protect against steatosis progression towards steatohepatitis. Journal of hepatology 2017; 66 (06) 1241-1250
  • 46 Inada Y, Mizukoshi E, Seike T. et al. Characteristics of Immune Response to Tumor-Associated Antigens and Immune Cell Profile in Patients With Hepatocellular Carcinoma. Hepatology (Baltimore, Md) 2019; 69 (02) 653-665
  • 47 Sutti S, Albano E. Adaptive immunity: an emerging player in the progression of NAFLD. Nature Reviews Gastroenterology & Hepatology 2020; 17 (02) 81-92
  • 48 Zheng M, Tian Z. Liver-Mediated Adaptive Immune Tolerance. Front Immunol 2019; 10: 2525
  • 49 Wolchok JD. Checkpoint blockade: the end of the beginning. Nature Reviews Immunology 2021; 21 (10) 621
  • 50 Brown ZJ, Fu Q, Ma C. et al. Carnitine palmitoyltransferase gene upregulation by linoleic acid induces CD4(+) T cell apoptosis promoting HCC development. Cell Death Dis 2018; 9 (06) 620
  • 51 Pfister D, Núñez NG, Pinyol R. et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021; 592: 450-456
  • 52 Finn RS, Qin S, Ikeda M. et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. New England Journal of Medicine 2020; 382 (20) 1894-1905
  • 53 Kelley RK, Greten TF. Hepatocellular Carcinoma – Origins and Outcomes. The New England journal of medicine 2021; 385 (03) 280-282
  • 54 Abou-Alfa GK, Chan SL, Kudo M. et al. Phase 3 randomized, open-label, multicenter study of tremelimumab (T) and durvalumab (D) as first-line therapy in patients (pts) with unresectable hepatocellular carcinoma (uHCC): HIMALAYA. Journal of Clinical Oncology 2022; 40 (Suppl. 04) 379
  • 55 Wang Z, Aguilar EG, Luna JI. et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nature medicine 2019; 25 (01) 141-151
  • 56 Pellicci DG, Koay HF, Berzins SP. Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nature reviews Immunology 2020; 20 (12) 756-770
  • 57 Wolf MJ, Adili A, Piotrowitz K. et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer cell 2014; 26 (04) 549-564
  • 58 Lee YJ, Holzapfel KL, Zhu J. et al. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nature immunology 2013; 14 (11) 1146-1154
  • 59 Syn WK, Agboola KM, Swiderska M. et al. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut 2012; 61 (09) 1323-1329
  • 60 Ma C, Han M, Heinrich B. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science (New York, NY) 2018; 360: eaan5931
  • 61 Toubal A, Kiaf B, Beaudoin L. et al. Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity. Nat Commun 2020; 11 (01) 3755
  • 62 Li Y, Huang B, Jiang X. et al. Mucosal-Associated Invariant T Cells Improve Nonalcoholic Fatty Liver Disease Through Regulating Macrophage Polarization. Front Immunol 2018; 9: 1994
  • 63 Shalapour S, Lin XJ, Bastian IN. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 2017; 551: 340-345
  • 64 Barrow F, Khan S, Fredrickson G. et al. Microbiota-Driven Activation of Intrahepatic B Cells Aggravates NASH Through Innate and Adaptive Signaling. Hepatology (Baltimore, Md) 2021; 74 (02) 704-722
  • 65 Gregory SN, Perati SR, Brown ZJ. Alteration in immune function in patients with fatty liver disease. Hepatoma Research 2022; 8: 31
  • 66 Meli R, Mattace Raso G, Calignano A. Role of innate immune response in non-alcoholic Fatty liver disease: metabolic complications and therapeutic tools. Front Immunol 2014; 5: 177