CC BY 4.0 · SynOpen 2022; 06(04): 319-328
DOI: 10.1055/a-1981-9151
paper

Synthesis of α-Sulfoximino Tetrazoles via Azido-Ugi Four-Component Reaction

a   Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, Tamilnadu, India
,
b   Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India
,
a   Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, Tamilnadu, India
› Author Affiliations
The project was supported by DST-SERB (ECR/2018/001462), CSIR-New Delhi (02(0445)/21/EMR-II), DST-FIST program. C.P.I.J. thanks CSIR-New Delhi for a Fellowship and for support of the HRMS facility (Dept. of Chemistry, NIT-Trichy). Funding provided to R.K. was due to DST-FIST (II) for the Single Crystal Facility at the Department of Chemistry, Panjab University, Chandigarh.


Abstract

The sulfoximine-based tetrazoles have been synthesized via azido-Ugi four-component reactions of sulfoximines, isocyanides, aldehydes, and TMS-azide in MeOH at 70 °C in the presence of InCl3. Replacement of sulfoximines with sulfonimidamides (SIA) has delivered the corresponding SIA-based tetrazole. Interestingly, SIA also acts as a surrogate amine to furnish the corresponding aminotetrazole as a by-product.

Supporting Information



Publication History

Received: 12 October 2022

Accepted after revision: 17 November 2022

Accepted Manuscript online:
17 November 2022

Article published online:
12 December 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Butler RN. In Comprehensive Heterocyclic Chemistry, Vol. 4. Katritzky AR, Ress CW, Scriven EF. V. Pergamon; Oxford: 1996: 621-678
    • 1b Lesnikovich AI, Levchik SV, Balabanovich AI, Ivashkevich OA, Gaponik PN. Thermochim. Acta 1992; 200: 427
    • 1c Koldobskii GI, Ostrovskii VA. Russ. Chem. Rev. 1994; 63: 797
  • 2 Wei C.-X, Bian M, Gong G.-H. Molecules 2015; 20: 5528
  • 3 Ostrovskii V, Trifonov R, Popova E. Russ. Chem. Bull. 2012; 61: 768
    • 4a Myznikov LV, Hrabalek A, Koldobskii GI. Chem. Heterocycl. Compd. 2007; 43: 1
    • 4b Rodrigues T, Reker D, Welin M, Caldera M, Brunner C, Gabernet G, Schneider P, Walse B, Schneider G. Angew. Chem. Int. Ed. 2015; 54: 15079
    • 4c Wan Z.-K, Follows B, Kirincich S, Wilson D, Binnun E, Xu W, Joseph- McCarthy D, Wu J, Smith M, Zhang Y.-L. Bioorg. Med. Chem. Lett. 2007; 17: 2913
    • 5a Lv F, Liu Y, Zou J, Zhang D, Yao Z. Dyes Pigm. 2006; 68: 211
    • 5b Song W, Wang Y, Qu J, Madden MM, Lin Q. Angew. Chem. Int. Ed. 2008; 47: 2832
  • 6 Gao H, Shreeve JM. Chem. Rev. 2011; 111: 7377
    • 7a Shmatova OI, Nenajdenko VG. J. Org. Chem. 2013; 78: 9214
    • 7b Torii H, Nakadai M, Ishihara K, Saito S, Yamamoto H. Angew. Chem. Int. Ed. 2004; 43: 1983
    • 7c Hartikka A, Arvidsson PI. Eur. J. Org. Chem. 2005; 4287
    • 8a Gutmann B, Glasnov T, Razzaq T, Goessler W, Roberge DM, Kappe CO. Beilstein J. Org. Chem. 2011; 7: 503
    • 8b Frija LM. T, Ismael A, Cristiano ML. S. Molecules 2010; 15: 3757
  • 9 Lassalas P, Gay B, Lasfargeas C, James MJ, Tran V, Vijayendran KG, Brunden KR, Kozlowski MC, Thomas CJ, Smith AB. III, Huryn DM, Ballatore C. J. Med. Chem. 2016; 59: 3183
    • 10a Shultz ZP, Scattolin T, Wojtas L, Lopchuk JM. Nat. Synth. 2022; 1: 170
    • 10b Lucking U. Angew. Chem. Int. Ed. 2013; 52: 9399
    • 10c Sirvent J, Lücking U. ChemMedChem 2017; 12: 487
  • 11 Boulard E, Zibulski V, Oertel L, Lienau P, Schäfer M, Ganzer U, Lücking U. Chem. Eur. J. 2020; 26: 4378
    • 12a Craig D, Grellepois F, White AJ. P. J. Org. Chem. 2005; 70: 6827
    • 12b Shen X, Zhang W, Ni C, Gu Y, Hu J. J. Am. Chem. Soc. 2012; 134: 16999
    • 12c Worch C, Mayer AC, Bolm C, Toru T, Bolm C. Organosulfur Chemistry in Asymmetric Synthesis. Wiley-VCH; Weinheim: 2008: 209
    • 12d Moessner C, Bolm C. Angew. Chem. Int. Ed. 2005; 44: 7564
    • 12e Hosseinian A, Fekri LZ, Monfared A, Vessally E, Nikpassand M. J. Sulfur Chem. 2018; 39: 674
    • 12f Ghosh P, Ganguly B, Das S. Asian J. Org. Chem. 2020; 9: 2035
    • 14a Jesin CP. I, Nandi GC. Chem. Eur. J. 2019; 25: 743
    • 14b Jesin CP. I, Ravindra S, Nandi GC. Tetrahedron 2019; 75: 130622
    • 14c Nandi GC. Eur. J. Org. Chem. 2017; 6633
    • 14d Nandi GC, Raju C. Org. Biomol. Chem. 2017; 15: 2234
    • 14e Jesin CP. I, Nandi GC. Adv. Synth. Catal. 2018; 360: 2465
    • 14f Ravindra S, Rohith J, Jesin CP. I, Kataria R, Nandi GC. ChemistrySelect 2019; 4: 14004
    • 14g Ravindra S, Nayak A, Jesin CP. I, Nandi GC. Adv. Synth. Catal. 2022; 364: 1144
  • 15 Ugi I. Angew. Chem. 1959; 71: 386
  • 16 Neochoritis CG, Zhao T, Domling A. Chem. Rev. 2019; 119: 1970
  • 17 Mancheño OG, Bolm C. Org. Lett. 2007; 9: 2951
  • 18 Hommelsheim R, Ponce HM. N, Truong K.-N, Rissanen K, Bolm C. Org. Lett. 2021; 23: 3415
    • 19a Xie Y, Zhou B, Zhou S, Zhou S, Wei W, Liu J, Zhan Y, Cheng D, Li Y, Wang B, Xue X, Li Z. ChemistrySelect 2017; 2: 1620
    • 19b Izzo F, Schafer M, Stockman R, Lucking U. Chem. Eur. J. 2017; 23: 15189
    • 20a Worch C, Bolm C. Synlett 2009; 2425
    • 20b Steurer M, Bolm C. J. Org. Chem. 2010; 75: 3301
    • 20c Nandi GC, Arvidsson PI. Adv. Synth. Catal. 2018; 360: 2976
    • 20d Chinthakindi PK, Naicker T, Thota N, Govender T, Kruger HG, Arvidsson PI. Angew. Chem. Int. Ed. 2017; 56: 4100
    • 20e Boulard E, Zibulski V, Oertel L, Lienau P, Schäfer M, Ganzer U, Lücking U. Chem. Eur. J. 2020; 26: 4378