physioscience 2023; 19(03): 116-123
DOI: 10.1055/a-1963-6545
Originalarbeit

Videogestütztes Feedbacktraining als präventives Techniktraining – Eine exploratorische Studie

Preventive Technique Training with Video Feedback – An Exploratory Study
Institut für Sportwissenschaft, Carl von Ossietzky Universität Oldenburg, Oldenburg, Deutschland
,
Institut für Sportwissenschaft, Carl von Ossietzky Universität Oldenburg, Oldenburg, Deutschland
,
Institut für Sportwissenschaft, Carl von Ossietzky Universität Oldenburg, Oldenburg, Deutschland
› Author Affiliations

Zusammenfassung

Hintergrund Im Sport wird angenommen, dass ein dynamischer Knievalgus bei einbeinigen Landungen einen relevanten Verletzungsmechanismus des vorderen Kreuzbands darstellt. Während bestehende effektive Präventionsprogramme zur Reduktion des Knievalgus primär auf die Verbesserung allgemeiner konditioneller und/oder koordinativer Einflussgrößen ausgerichtet sind, fokussiert ein Video-Feedback-Training die Korrektur individueller Defizite in der sportlichen Technik, um u. a. ein potenzielles Verletzungsrisiko zu reduzieren.

Ziel Evaluation der kurz- und insbesondere mittel- und langfristigen Wirksamkeit eines Video-Feedback-Trainings zur Veränderung des frontalen Kniewinkels bei einbeinigen Landungen.

Methode Im Rahmen einer exploratorischen Studie wurden 10 sportlich aktive Personen (Alter: 25 ± 5 Jahre, Größe: 170,8 ± 4,5 cm) getestet. Diese führten in Anlehnung an das Landing Error Scoring System (LESS-Test) einbeinige Drop-Jumps in einem Pretest, in einer Aneignungsphase mit Video-Feedback und 2 Retentionstests 2 und 6 Wochen nach der Aneignungsphase ohne Video-Feedback aus. Das Video-Feedback wurde in der Aneignungsphase bei jedem zweiten Sprung und zusätzlich selbstbestimmt auf Nachfrage über ein Expertenmodell mit neutraler Kniestellung im Overlay-Modus aus der Frontalperspektive gegeben.

Ergebnisse Die Ergebnisse wurden nach Sprung- und Nichtsprungbein der Proband*innen differenziert. Sie zeigen eine bedeutsame Verringerung des frontalen Kniewinkels für das Sprungbein (F1, 9 = 10,43, p = 0,01, η2 p = 0,54, 95 % CI [0,04; 0,74]) bei einbeinigen Landungen in der Aneignungsphase, jedoch keine statistisch bedeutsame Verringerung für das Nichtsprungbein (F1, 9 = 4,07, p = 0,08, η2 p = 0,31, 1-β = 0,44). Im Retentionstest nach 6 Wochen nähert sich der frontale Kniewinkel beidseitig dem Ausgangsniveau aus dem Pretest wieder an.

Schlussfolgerung Ein Video-Feedback-Training bietet sich als einfach durchzuführendes, alternatives Verletzungspräventionsprogramm an. Eine fehlende mittel- und langfristige Veränderung und hohe Variabilität des frontalen Kniewinkels lassen eine mehrfache und/oder regelmäßige Durchführung eines Video-Feedback-Trainings sinnvoll erscheinen. In weiteren Studien mit Kontrollgruppendesign und unterschiedlichen Feedback-Prozeduren wird systematisch zu prüfen sein, ob eine längerfristige Reduktion eines potenziellen Verletzungsrisikos des vorderen Kreuzbands erreicht werden kann.

Abstract

Background In sports, it is assumed that dynamic knee valgus is a relevant injury mechanism for the anterior cruciate ligament. Existing and effective injury prevention programmes for reduction of dynamic knee valgus primarily focus on improvement of general conditioning and/or coordination, while video feedback training focuses on improvement of deficits in technique to, among other, decrease potential injury risk.

Aim Evaluation of short, mid and long-term effectiveness of video-feedback training for adjustment of frontal knee angle in single-leg landings.

Method In an exploratory study, N = 10 physically active subjects (age:25 ± 5 years; body height: 170.8 ± 4.5 cm) were tested. In line with the Landing Error Scoring System (LESS test), they carried out single-leg drop jumps in a pre-test, during an acquisition phase in which they were provided video feedback, as well as in 2 retention tests 2 and 6 weeks after the acquisition phase without video feedback. During the acquisition phase, video feedback was provided through an overlay of an expert model with a neutral frontal knee angle from the frontal perspective for every second drop jump and additionally, participants were able to claim self-determined video feedback.

Results Data for the jumping leg and non-jumping leg were analysed separately. Results show a relevant reduction of frontal knee angle in the jumping leg (F1, 9 = 10.43, p = .01, η2 p = .54, 95 % CI [.04,.74]) but not for the non-jumping leg (F1, 9 = 4.07, p = .08, η2 p = .31, 1-β = .44) during single-leg landings in the acquisition phase. The retention test after 6 weeks revealed that frontal knee angle in both legs approximated the initial knee position from the pre-test.

Conclusion Video feedback training can be used as a feasible, alternative injury prevention programme. Missing mid and long-term adjustments and high variability in frontal knee angle suggest repeated and/or regular exposure to video feedback training. Future studies with control groups as well as different video feedback methods should systematically investigate whether a longer-term reduction of potentially anterior cruciate ligament injury risk is achievable.



Publication History

Received: 29 September 2022

Accepted: 02 January 2023

Article published online:
06 April 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Gokeler A, Zantop T, Jöllenbeck T. Epidemiologie. In: Gesellschaft für Orthopädisch-TraumatologischeSpoertmedizin, Hrsg. Vorderes Kreuzband – GOTS-Expertenmeeting;. 2010: 3-14
  • 2 Olsen O-E, Myklebust G, Engebretsen L. et al. Injury Mechanisms for Anterior Cruciate Ligament Injuries in Team Handball: A Systematic Video Analysis. Am J Sports Med 2004; 32: 1002-1012 DOI: 10.1177/0363546503261724.
  • 3 Waldén M, Krosshaug T, Bjørneboe J. et al. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: a systematic video analysis of 39 cases. Brit J Sports Med 2015; 49: 1452-1460 DOI: 10.1136/bjsports-2014-094573.
  • 4 Krosshaug T, Nakamae A, Boden BP. et al. Mechanisms of Anterior Cruciate Ligament Injury in Basketball: Video Analysis of 39 Cases. Am J Sports Med 2007; 35: 359-367 DOI: 10.1177/0363546506293899.
  • 5 Oberhofer E. Ein Kreuzbandriss ist keine Bagatelle! Prävention und Prähabilitation entscheidend. MMW-Fortschritte der Medizin 2020; 162: 12-14
  • 6 Smith HC, Vacek P, Johnson RJ. et al. Risk Factors for Anterior Cruciate Ligament Injury: A Review of the Literature – Part 1: Neuromuscular and Anatomic Risk. Sports Health 2012; 4: 69-78 DOI: 10.1177/1941738111428281.
  • 7 Smith HC, Vacek P, Johnson RJ. et al. Risk Factors for Anterior Cruciate Ligament Injury: A Review of the Literature—Part 2: Hormonal, Genetic, Cognitive Function, Previous Injury, and Extrinsic Risk Factors. Sports Health 2012; 4: 155-161 DOI: 10.1177/1941738111428282.
  • 8 Bahr R, Krosshaug T. Understanding injury mechanisms: a key component of preventing injuries in sport. Brit J Sports Med 2005; 39: 324-329 DOI: 10.1136/bjsm.2005.018341.
  • 9 Boden BP, Dean GS, Feagin Jr JA. et al. Mechanisms of anterior cruciate ligament injury. Orthopedics 2000; 23: 573-578
  • 10 Hewett TE, Myer GD, Ford KR. et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 2005; 33: 492-501 DOI: 10.1177/0363546504269591.
  • 11 Yu B, Garrett WE. Mechanisms of non-contact ACL injuries. Brit J Sports Med 2007; 41: 47-51 DOI: 10.1136/bjsm.2007.037192.
  • 12 Pappas E, Hagins M, Sheikhzadeh A. et al. Biomechanical differences between unilateral and bilateral landings from a jump: gender differences. Clin J Sport Med 2007; 17: 263-268 DOI: 10.1097/JSM.0b013e31811f415b.
  • 13 Hannum C, Adamo R, Marxen T. et al. Single Leg vs. Double Leg Jump Kinematics. Poster: Southwest American College of Sports Medicine;. Long Beach, California 2017
  • 14 Mandelbaum BR, Silvers HJ, Watanabe DS. et al. Effectiveness of a Neuromuscular and Proprioceptive Training Program in Preventing Anterior Cruciate Ligament Injuries in Female Athletes: 2-Year Follow-up. 2005; 33: 1003-1010 DOI: 10.1177/0363546504272261.
  • 15 Sadigursky D, Braid JA, De Lira DNL. et al. The FIFA 11+ injury prevention program for soccer players: a systematic review. BMC Sports Sci Med Rehabil 2017; 9 DOI: 10.1186/s13102-017-0083-z.
  • 16 Deutsche Kniegesellschaft e. V., Hrsg. Stop-X – Prävention von Knieverletzungen. Im Internet (Stand: 25.02.2022): www.stop-x.de/
  • 17 Gokeler A, Seil R, Kerkhoffs G. et al. A novel approach to enhance ACL injury prevention programs. J Experiment Orthop 2018; 5: 22 DOI: 10.1186/s40634-018-0137-5.
  • 18 Benjaminse A, Gokeler A, Dowling AV. et al. Optimization of the Anterior Cruciate Ligament Injury Prevention Paradigm: Novel Feedback Techniques to Enhance Motor Learning and Reduce Injury Risk. J Orthop Sports Phys Ther 2015; 45: 170-182 DOI: 10.2519/jospt.2015.4986.
  • 19 Nowoisky C, Beyer C, Zepperitz S. et al. Ein trainingsmethodisches und technologisches Konzept zum Video-Feedback im Techniktraining. Leistungssport 2012; 42: 19-25
  • 20 Benjaminse A, Postma W, Janssen I. et al. Video Feedback and 2-Dimensional Landing Kinematics in Elite Female Handball Players. J Athletic Training 2017; 52: 993-1001 DOI: 10.4085/1062-6050-52.10.11.
  • 21 Dallinga J, Benjaminse A, Gokeler A. et al. Innovative Video Feedback on Jump Landing Improves Landing Technique in Males. Int J Sports Med 2017; 38: 150-158 DOI: 10.1055/s-0042-106298.
  • 22 Welling W, Benjaminse A, Gokeler A. et al. Enhanced retention of drop vertical jump landing technique: A randomized controlled trial. Human Movement Science 2016; 45 DOI: 10.1016/j.humov.2015.11.008.
  • 23 Munro A, Herrington L. The effect of videotape augmented feedback on drop jump landing strategy: Implications for anterior cruciate ligament and patellofemoral joint injury prevention. The Knee 2014; 21 DOI: 10.1016/j.knee.2014.05.011.
  • 24 Myer GD, Stroube BW, DiCesare CA. et al. Augmented Feedback Supports Skill Transfer and Reduces High-Risk Injury Landing Mechanics: A Double-Blind, Randomized Controlled Laboratory Study. Am J Sports Med 2013; 41: 669-677 DOI: 10.1177/0363546512472977.
  • 25 Padua DA, Marshall SW, Boling MC. et al. The Landing Error Scoring System (LESS) Is a Valid and Reliable Clinical Assessment Tool of Jump-Landing Biomechanics: The JUMP-ACL Study. Am J Sports Med 2009; 37: 1996-2002 DOI: 10.1177/0363546509343200.
  • 26 Benjaminse A, Otten E, Gokeler A. et al. Motor learning strategies in basketball players and its implications for ACL injury prevention: a randomized controlled trial. Knee Surgery, Sports Traumatology, Arthroscopy 2017; 25: 2365-2376 DOI: 10.1007/s00167-015-3727-0.
  • 27 Bund A, Angert R, Wiemeyer J. Selbstbestimmtes Lernen im Sportunterricht. Interviews mit Sportlehrerinnen und Sportlehrern. Sportunterricht 2003; 52: 74-79
  • 28 Gokeler A, Benjaminse A, Hewett TE. et al. Feedback Techniques to Target Functional Deficits Following Anterior Cruciate Ligament Reconstruction: Implications for Motor Control and Reduction of Second Injury Risk. Sports Med 2013; 43: 1065-1074 DOI: 10.1007/s40279-013-0095-0.
  • 29 Olivier N, Müller H. Sporttechnisches Bildschirmtraining im Spiegel des „motor approach“ der Motorikforschung. In: Altenberger H. , Hrsg Medien im Sport. Schorndorf: Hofmann; 2002: 261-285
  • 30 Daugs R, Marschall F. Feedback. In: Mechling H, Munzert J. , Hrsg Handbuch Bewegungswissenschaft – Bewegungslehre. Schorndorf: Hofmann; 2003: 281-294
  • 31 Magill R, Anderson D. Motor learning and control. Concepts and Applications. 11th Ed.. New York: McGraw-Hill Publishing; 2016
  • 32 Munro A, Herrington L, Carolan M. Reliability of 2-dimensional video assessment of frontal-plane dynamic knee valgus during common athletic screening tasks. J Sport Rehabil 2012; 21: 7-11 DOI: 10.1123/jsr.21.1.7.
  • 33 Lally EM, Ericksen H, Earl-Boehm J. Measurement properties of clinically accessible movement assessment tools for analyzing jump landings: A systematic review. J Sport Rehabil 2022; 31: 465-475 DOI: 10.1123/jsr.2021-0288.
  • 34 Kotsifaki A, Van Rossom S, Whiteley R. et al. Single leg vertical jump performance identifies knee function deficits at return to sport after ACL reconstruction in male athletes. Brit J Sports Med 2022; 56: 490-498 DOI: 10.1136/bjsports-2021-104692.
  • 35 Padua DA, DiStefano LJ, Beutler AI. et al. The Landing Error Scoring System as a Screening Tool for an Anterior Cruciate Ligament Injury-Prevention Program in Elite-Youth Soccer Athletes. J Athletic Training 2015; 50: 589-595 DOI: 10.4085/1062-6050-50.1.10.
  • 36 Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychological bulletin 1979; 86: 420-428
  • 37 Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropractic Med 2016; 15: 155-163
  • 38 Erdfelder E, Ulrich R. Zur Methodologie von Replikationsstudien. Psychologische Rundschau 2018; 69: 3-21 DOI: 10.1026/0033-3042/a000387.
  • 39 Panzer S. Motorisches Umlernen. In: Güllich A, Krüger M. , Hrsg Bewegung, Training, Leistung und Gesundheit: Handbuch Sport und Sportwissenschaft. Berlin, Heidelberg: Springer; 2020: 1-17 DOI: 10.1007/978-3-662-53386-4_61-1
  • 40 Benjaminse A, Welling W, Otten B. et al. Novel methods of instruction in ACL injury prevention programs, a systematic review. Phys Ther Sport 2015; 16: 176-186 DOI: 10.1016/j.ptsp.2014.06.003.