SynOpen, Inhaltsverzeichnis CC BY-NC-ND 4.0 · SynOpen 2022; 06(04): 219-226DOI: 10.1055/a-1941-3801 paper Zinc Acetate Catalyzed Stereoselective 1,2-trans-Glycosylation Using Glycosyl Chlorides Mohammad Saif Ali a Organic Synthesis and Process Chemistry Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, India , P. I. Ramesh a Organic Synthesis and Process Chemistry Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, India b Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India , Subhash Ghosh a Organic Synthesis and Process Chemistry Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, India b Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India , Madhu Babu Tatina ∗ a Organic Synthesis and Process Chemistry Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, India b Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India› InstitutsangabenArtikel empfehlen Abstract Alle Artikel dieser Rubrik The IICT Communication Number: IICT/Pubs./2022/169. Abstract We report a strategy for the stereoselective synthesis of 1,2-trans-glycosides in the absence of neighboring group participation. The present protocol for the selective glycosylation mainly relies on catalyst control rather than protecting group selection. By using this protocol, several glycosides were prepared. Zinc acetate was found to be the optimal catalyst, providing the desired 1,2-trans-glycosides from glucose- and mannose-derived glycosyl halides at room temperature instead of low-temperature conditions. Key words Key wordsglycosyl chloride - no neighboring group participation - 1,2-trans-glycosylation - zinc acetate Volltext Referenzen References and Notes 1a Crich D. Acc. Chem. Res. 2010; 43: 1144 1b Seeberger PH. Acc. Chem. Res. 2015; 48: 1450 1c Galonic DP, Gin DY. Nature 2007; 446: 1000 1d Zhu X, Schmidt RR. Angew. Chem. Int. Ed. 2009; 48: 1900 2a Pornsuriyasak P, Demchenko AV. Angew. Chem. Int. Ed. 2005; 44: 7123 2b Nukada T, Berces A, Zgierski MZ, Whitfield DM. J. Am. Chem. Soc. 1998; 120: 13291 2c Singh GP, Watson AJ. A, Fairbanks AJ. Org. Lett. 2015; 17: 4376 2d Speciale G, Farren-Dai M, Shidmoossavee FS, Williams SJ, Bennet AJ. J. Am. Chem. Soc. 2016; 138: 14012 2e Elferink H, Mensink RA, White PB, Boltje TJ. Angew. Chem. Int. Ed. 2016; 55: 11217 3a Nukada T, Berces A, Zgierski MZ, Whitfield DM. J. Am. Chem. Soc. 1998; 120: 13291 3b Jensen KJ. J. Chem. Soc., Perkin Trans. 1 2002; 2219 3c Boltje TJ, Buskas T, Boons G.-J. Nat. Chem. 2009; 1: 611 4 Aiguabella N, Holland MC, Gilmour R. Org. Biomol. Chem. 2016; 14: 5534 5 Karak M, Joh Y, Suenaga M, Oishi T, Torikai K. Org. Lett. 2019; 21: 1221 6a Helferich B, Zirner J. Chem. Ber. 1962; 95: 2604 6b Bock K, Meldal M. Acta Chem. Scand., Ser. B 1983; 37: 775 6c Conrow RB, Bernstein S. J. Org. Chem. 1971; 36: 863 6d Ogawa T, Matsui M. Carbohydr. Res. 1976; 51: C13 6e Mukherjee D, Ray PK, Chowdhury US. Tetrahedron 2001; 57: 7701 6f Li C, Liang H, Zhang ZX, Wang Z, Yu L, Liu H, An F, Wang S, Ma L, Xue W. Tetrahedron 2018; 74: 3963 6g Igarashi K, Honma T, Irisawa J. Carbohydr. Res. 1970; 15: 329 6h Hanessian S, Banoub J. Carbohydr. Res. 1977; 53: C13 6i Verlhac P, Leteux C, Toupet L, Veyrieres A. Carbohydr. Res. 1996; 291: 11 6j Kaeothip S, Pornsuriyasak P, Demchenko AV. Tetrahedron Lett. 2008; 49: 1542 7 Yao H, DuyVu M, Liu X.-W. Carbohydr. Res. 2019; 473: 72 8a Igarashi K, Honma T, Irisawa J. Carbohydr. Res. 1970; 15: 329 8b Matsuoka K, Terabatake M, Umino A, Esumi Y, Hatano K, Terunuma D, Kuzuhara H. Biomacromolecules 2006; 7: 2274 9a Geringer SA, Demchenko AV. Org. Biomol. Chem. 2018; 16: 9133 9b Park Y, Harper KC, Kuhl N, Kwan EE, Liu RY, Jacobsen EN. Science 2017; 355: 162 10 Kulkarni SS, Gervay-Hague J. Org. Lett. 2008; 10: 4739 11 Adam Chu A.-H, Minciunescu A, Bennett CS. Org. Lett. 2015; 17: 6262 12a Tatina MB, Khong DT, Judeh ZM. A. Eur. J. Org. Chem. 2018; 2208 12b Boettcher S, Matwiejuk M, Thiem J. Beilstein J. Org. Chem. 2012; 8: 413 13 Bracinni I, Derouet C, Esnault J, Penhoat CH, Mallet JM, Michon V, Sinay P. Carbohydr. Res. 1993; 246: 23 14 Wulff G, Rohle G. Angew. Chem., Int. Ed. Engl. 1974; 13: 157 15a Suna G, Wua Y, Liua A, Qiua S, Zhanga W, Wangb Z, Zhang J. Synlett 2018; 29: 668 15b Dong X, Chen L, Zheng Z, Ma X, Luo Z, Zhang L. Chem. Commun. 2018; 54: 8626 16a Thorat BR, Gurav A, Dalvi B, Sawant A, Lokhande V, Mali SN. Curr. Chin. Chem. 2021; 1: 30 16b Cai F, Wu B, Crich D. Adv. Carbohydr. Chem. Biochem. 2009; 62: 251 16c Crich D, Sun SX. Tetrahedron 1998; 54: 8321 16d Crich D, Sun SX. J. Am. Chem. Soc. 1997; 119: 11217 17 Guo H, Si W, Li J, Yang G, Tang T, Wang Z, Tang J, Zhang J. Synthesis 2019; 51: 2984 18 Geng Y, Kumar A, Faidallah HM, Albar HA, Mhkalid IA, Schmidt RR. Angew. Chem. Int. Ed. 2013; 52: 10089 19 Dubey A, Sangwan R, Mandal PK. Catal. Commun. 2019; 125: 123 20 Guo H, Sia W, Li J, Yang G, Tang T, Wang Z, Tang J, Zhang J. Synthesis 2019; 51: 2984 Zusatzmaterial Zusatzmaterial Supporting Information