Int J Sports Med 2022; 43(11): 971-977
DOI: 10.1055/a-1832-0279
Clinical Sciences

Voluntary Increase of Minute Ventilation for Prevention of Acute Mountain Sickness

Sebastian Drago
1   Orthopedic Surgery, Hospital del Trabajador, Santiago, Chile
2   Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
,
Juan Campodónico
2   Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
3   Grupo de rescate médico en montaña (GREMM), Santiago, Chile
,
Mario Sandoval
4   Sport Medicine Department; Clínica MEDS, Santiago, Chile
,
Remco Berendsen
5   Anesthesia, Leiden University Medical Center, Leiden, Netherlands
,
Geert Alexander Buijze
6   Orthopaedic Surgery and Sports Medicine, Clinique Générale, Annecy, France
7   Orthopaedic Surgery, Lapeyronie Hospital, Montpellier University Medical Center, Montpellier, France
8   Orthopaedic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
› Institutsangaben

Abstract

This study evaluated the feasibility and efficacy of voluntary sustained hyperventilation during rapid ascent to high altitude for the prevention of acute mountain sickness (AMS). Study subjects (n=32) were volunteer participants in a 2-day expedition to Mount Leoneras (4954 m), starting at 2800m (base camp at 4120 m). Subjects were randomized to either: 1) an intervention group using the voluntary hyperventilation (VH) technique targeting an end-tidal CO2 (ETCO2)<20 mmHg; or 2) a group using acetazolamide (AZ). During the expedition, respiratory rate (28±20 vs. 18±5 breaths/min, mean±SD, P<0.01) and SpO2 (95%±4% vs. 89%±5%, mean±SD, P<0.01) were higher, and ETCO2 (17±4 vs. 26±4 mmHg, mean±SD, P<0.01) was lower in the VH group compared to the AZ group – as repeatedly measured at equal fixed intervals during the ascent – showing the feasibility of the VH technique. Regarding efficacy, the incidence of 6 (40%) subjects registering an LLS score≥3 in the VH group was non-inferior to the 3 (18%) subjects in the acetazolamide group (P=0.16, power 28%). Voluntary increase in minute ventilation is a feasible technique, but – despite the underpowered non-inferiority in this small-scale proof-of-concept trial – it is not likely to be as effective as acetazolamide to prevent AMS.

Supplementary Material



Publikationsverlauf

Eingereicht: 29. September 2021

Angenommen: 11. April 2022

Artikel online veröffentlicht:
27. Juni 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Richalet J-P, Larmignat P, Poitrine E. et al. Physiological risk factors for severe high-altitude illness: a prospective cohort study. Am J Respir Crit Care Med 2012; 185: 192-198
  • 2 Canouï-Poitrine F, Veerabudun K, Larmignat P. et al. Risk prediction score for severe high altitude illness: a cohort study. PloS One 2014; 9: e100642
  • 3 Moore LG, Harrison GL, McCullough RE. et al. Low acute hypoxic ventilatory response and hypoxic depression in acute altitude sickness. J Appl Physiol (1985) 1986; 60: 1407-1412
  • 4 Bernardi L, Schneider A, Pomidori L. et al. Hypoxic ventilatory response in successful extreme altitude climbers. Eur Respir J 2006; 27: 165-171
  • 5 Bernardi L, Passino C, Spadacini G. et al. Reduced hypoxic ventilatory response with preserved blood oxygenation in yoga trainees and Himalayan Buddhist monks at altitude: evidence of a different adaptive strategy?. Eur J Appl Physiol 2007; 99: 511-518
  • 6 Bärtsch P, Swenson ER, Paul A. et al. Hypoxic ventilatory response, ventilation, gas exchange, and fluid balance in acute mountain sickness. High Alt Med Biol 2002; 3: 361-376
  • 7 Luks AM, Auerbach PS, Freer L. et al. Wilderness Medical Society clinical practice guidelines for the prevention and treatment of acute altitude illness: 2019 update. Wilderness Environ Med 2019; 30: S3-S18
  • 8 Bradbury KE, Yurkevicius BR, Mitchell KM. et al. Acetazolamide does not alter endurance exercise performance at 3,500-m altitude. J Appl Physiol (1985) 2020; 128: 390-396
  • 9 Bradwell AR, Ashdown K, Rue C. et al. Acetazolamide reduces exercise capacity following a 5-day ascent to 4559 m in a randomised study. BMJ Open Sport Exerc Med 2018; 4: e000302
  • 10 Bradwell AR, Myers SD, Beazley M. et al. Exercise limitation of acetazolamide at altitude (3459 m). Wilderness Environ Med 2014; 25: 272-277
  • 11 Posch AM, Dandorf S, Hile DC. The effects of acetazolamide on exercise performance at sea level and in hypoxic environments: a review. Wilderness Environ Med 2018; 29: 541-545
  • 12 Acetazolamide in control of acute mountain sickness. Lancet 1981; 1: 180–183
  • 13 Buijze GA, Hopman MT. Controlled hyperventilation after training may accelerate altitude acclimatization. Wilderness Environ Med 2014; 25: 484-486
  • 14 Leaf DE, Goldfarb DS. Mechanisms of action of acetazolamide in the prophylaxis and treatment of acute mountain sickness. J Appl Physiol (1985) 2007; 102: 1313-1322
  • 15 Basnyat B, Gertsch JH, Holck PS. et al. Acetazolamide 125 mg BD is not significantly different from 375 mg BD in the prevention of acute mountain sickness: the prophylactic acetazolamide dosage comparison for efficacy (PACE) trial. High Alt Med Biol 2006; 7: 17-27
  • 16 Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982; 14: 377-381
  • 17 Roach RC, Hackett PH, Oelz O. et al. The 2018 Lake Louise Acute Mountain Sickness Score. High Alt Med Biol 2018; 19: 4-6
  • 18 Ritchie ND, Baggott AV, Andrew Todd WT. Acetazolamide for the prevention of acute mountain sickness – a systematic review and meta-analysis. J Travel Med 2012; 19: 298-307
  • 19 van Patot MCT, Leadbetter G, Keyes LE. et al. Prophylactic low-dose acetazolamide reduces the incidence and severity of acute mountain sickness. High Alt Med Biol 2008; 9: 289-293
  • 20 Lipman GS, Jurkiewicz C, Winstead-Derlega C. et al. Day of ascent dosing of acetazolamide for prevention of acute mountain sickness. High Alt Med Biol 2019; 20: 271-278
  • 21 Swenson ER, Leatham KL, Roach RC. et al. Renal carbonic anhydrase inhibition reduces high altitude sleep periodic breathing. Respir Physiol 1991; 86: 333-343
  • 22 Swenson ER. Pharmacology of acute mountain sickness: old drugs and newer thinking. J Appl Physiol (1985) 2016; 120: 204-215
  • 23 Shimoda LA, Luke T, Sylvester JT. et al. Inhibition of hypoxia-induced calcium responses in pulmonary arterial smooth muscle by acetazolamide is independent of carbonic anhydrase inhibition. Am J Physiol Lung Cell Mol Physiol 2007; 292: L1002-L1012
  • 24 An Y, Zhang J, Han J. et al. Hypoxia-inducible factor-1α dependent pathways mediate the renoprotective role of acetazolamide against renal ischemia-reperfusion injury. Cell Physiol Biochem 2013; 32: 1151-1166
  • 25 Houston CS. Some observations on acclimatization to high altitude. N Engl J Med 1955; 253: 964-968
  • 26 Sanborn MR, Edsell ME, Kim MN. et al. Cerebral hemodynamics at altitude: effects of hyperventilation and acclimatization on cerebral blood flow and oxygenation. Wilderness Environ Med 2015; 26: 133-141
  • 27 Leichtfried V, Basic D, Burtscher M. et al. Diagnosis and prediction of the occurrence of acute mountain sickness measuring oxygen saturation – independent of absolute altitude?. Sleep Breath 2016; 20: 435-442
  • 28 Yin Y. Sample size calculation for a proof of concept study. J Biopharm Stat 2002; 12: 267-276
  • 29 Kayser B, Hulsebosch R, Bosch F. Low-dose acetylsalicylic acid analog and acetazolamide for prevention of acute mountain sickness. High Alt Med Biol 2008; 9: 15-23
  • 30 Kayser B, Dumont L, Lysakowski C. et al. Reappraisal of acetazolamide for the prevention of acute mountain sickness: a systematic review and meta-analysis. High Alt Med Biol 2012; 13: 82-92
  • 31 Waeber B, Kayser B, Dumont L. et al. Impact of study design on reported incidences of acute mountain sickness: a systematic review. High Alt Med Biol 2015; 16: 204-215
  • 32 Schulz KF, Altman DG, Moher D. CONSORT Group. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMC Med 2010; 8: 18