Klin Monbl Augenheilkd 2023; 240(10): 1199-1206
DOI: 10.1055/a-1743-3067
Klinische Studie

Evaluation of Retinal Layer Thicknesses in Patients with Keratoconus Using Retinal Layer Segmentation Analysis

Bewertung der Netzhautschichtdicken bei Patienten mit Keratokonus mit Hilfe der Segmentierungsanalyse der Netzhautschicht
1   Ophthalmology, Adiyaman Universitesi Egitim ve Arastirma Hastanesi, Adiyaman, Turkey
,
Dilara Ozkoyuncu Kocabaş
2   Ophthalmology, TOBB ETU Hospital, Ankara, Turkey
,
Abdurrahman Bilen
1   Ophthalmology, Adiyaman Universitesi Egitim ve Arastirma Hastanesi, Adiyaman, Turkey
,
1   Ophthalmology, Adiyaman Universitesi Egitim ve Arastirma Hastanesi, Adiyaman, Turkey
,
Alper Halil Bayat
3   Ophyhalmology, Istanbul Medipol University, Birlik Mahallesi Bahçeler Caddesi No:5, Esenler/Istanbul, Turkey
,
Burak Oren
1   Ophthalmology, Adiyaman Universitesi Egitim ve Arastirma Hastanesi, Adiyaman, Turkey
,
Hasan Kiziltoprak
1   Ophthalmology, Adiyaman Universitesi Egitim ve Arastirma Hastanesi, Adiyaman, Turkey
› Author Affiliations

Abstract

Objective To conduct an evaluation of the effects of irregular astigmatism on the retinal nerve fiber layer (RNFL) and the retinal layers observed using spectral-domain optical coherence tomography (SD-OCT) in patients who had keratoconus (KC).

Materials and Methods A total of 255 eyes from 255 individuals, comprising 72 eyes of KC patients, 70 eyes of patients with astigmia, and 113 eyes of healthy controls were included in the analysis. RNFL scan maps (comprising global, temporal, superotemporal, inferotemporal, nasal, inferonasal, and superonasal maps) and macular thickness (MT) maps of a standard from the Early Treatment Diabetic Retinopathy Study (ETDRS) grid were assessed. The measurements were segmented automatically using Spectralis software, and included the RNFL, inner and outer plexiform layers (IPL, OPL), inner and outer nuclear layers (INL, ONL), ganglion cell layer, retinal pigment epithelium (RPE) in the central 6-mm ETDRS subfield.

Results The RNFL thickness in the KC group was lower when compared with the other two groups; however, statistically significant differences were noted in the global, temporal, superotemporal, and inferotemporal sectors (p < 0.05 for all). All of the central MT parameters showed significant variation among the groups, while a statistically significant decrease was noted in the KC group, except in the inferior outer sector (p = 0.741). In the segmentation analysis, the KC group had the significantly lowest IPL, ONL, RPE, and outer retinal layer (ORL) thickness among the groups (p < 0.05 for each). The astigmatic group was similar to the control group with regard to these parameters (p > 0.05 for each).

Conclusion The eyes in the KC group appeared to have a thinner RNFL and MT when compared to those in the astigmatic and control groups. The ORLs, especially the ONL and RPE, were the most affected component of the macula in the KC group.

Zusammenfassung

Hintergrund Es sollte eine Bewertung der Auswirkungen von irregulärem Astigmatismus auf die retinale Nervenfaserschicht (RNFL) und die Netzhautschichten durchgeführt werden, die bei Patienten mit Keratokonus (KC) mittels optischer Kohärenztomografie (SD-OCT) im Spektralbereich beobachtet wurden.

Methoden Insgesamt 255 Augen von 255 Personen, davon 72 Augen von KC-Patienten, 70 Augen von Patienten mit Astigmatismus und 113 Augen von gesunden Kontrollpersonen, wurden in die Analyse eingeschlossen. RNFL-Scankarten (umfassend globale, temporale, superotemporale, inferotemporale, nasale, inferonasale und superonasale) und Makuladickekarten (MT-Karten) eines Standardrasters der Early Treatment Diabetic Retinopathie Study (ETDRS) wurden bewertet. Die Messungen wurden automatisch mit der Spectralis-Software segmentiert und umfassten die RNFL, innere und äußere plexiforme Schicht (IPL, OPL), innere und äußere Kernschicht (INL, ONL), Ganglienzellschicht, retinales Pigmentepithel (RPE) im zentralen 6-mm-ETDRS-Unterfeld.

Ergebnisse Die RNFL-Dicke in der KC-Gruppe war im Vergleich zu den anderen beiden Gruppen geringer; jedoch wurden statistisch signifikante Unterschiede in den globalen, temporalen, superotemporalen und inferotemporalen Sektoren festgestellt (p < 0,05 für alle). Alle zentralen MT-Parameter zeigten eine signifikante Variation zwischen den Gruppen, während eine statistisch signifikante Abnahme in der KC-Gruppe festgestellt wurde, außer im unteren äußeren Sektor (p = 0,741). In der Segmentierungsanalyse wies die KC-Gruppe die signifikant niedrigste IPL, ONL, RPE-Schicht und die signifikant niedrigste Dicke der äußeren Netzhautschicht (ORL) unter den Gruppen auf (jeweils p < 0,05). Die astigmatische Gruppe war hinsichtlich dieser Parameter der Kontrollgruppe ähnlich (jeweils p > 0,05).

Schlussfolgerungen Diejenigen in der KC-Gruppe schienen im Vergleich zu denen in der Astigmatismus- und Kontrollgruppe eine dünnere RNFL und MT zu haben. Die ORLs, insbesondere ONL und RPE, waren die am stärksten beeinflusste Komponente der Makula in der KC-Gruppe.



Publication History

Received: 01 October 2021

Accepted: 16 January 2022

Article published online:
23 March 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rabinowitz YS. Keratoconus. Surv Ophthalmol 1998; 42: 297-319
  • 2 Kalkan Akcay E, Akcay M, Uysal BS. et al. Impaired corneal biomechanical properties and the prevalence of keratoconus in mitral valve prolapse. J Ophthalmol 2014; 2014: 402193
  • 3 Gomes JAP, Rapuano CJ, Belin MW. et al. Global consensus on keratoconus diagnosis. Cornea 2015; 34: e38-e39
  • 4 Woodward MA, Blachley TS, Stein JD. The association between sociodemographic factors, common systemic diseases, and keratoconus: an analysis of a nationwide heath care claims database. Ophthalmology 2016; 123: 457-465.e2
  • 5 Meek KM. The Cornea and Sclera. In: Fratzl P. ed. Collagen. Boston, MA: Springer; 2008: 359-396
  • 6 Kenney MC, Nesburn AB, Burgeson RE. et al. Abnormalities of the extracellular matrix in keratoconus corneas. Cornea 1997; 16: 345-351
  • 7 Eandi CM, Del Priore LV, Bertelli E. et al. Central serous chorioretinopathy in patients with keratoconus. Retina 2008; 28: 94-96
  • 8 Rabinowitz YS. The genetics of keratoconus. Ophthalmol Clin North Am 2003; 16: 607-620 vii
  • 9 Zemba M, Zaharia AC, Dumitrescu OM. Association of retinitis pigmentosa and advanced keratoconus in siblings. Rom J Ophthalmol 2020; 64: 313-321
  • 10 Geitzenauer W, Hitzenberger CK, Schmidt-Erfurth UM. Retinal optical coherence tomography: past, present and future perspectives. Br J Ophthalmol 2011; 95: 171-177
  • 11 Budenz DL, Anderson DA, Varma R. et al. Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. Ophthalmology 2007; 114: 1046-1052
  • 12 Kang SH, Hong SW, Im SK. et al. Effect of myopia on the thickness of the retinal nerve fiber layer measured by Cirrus HD optical coherence tomography. Invest Ophthalmol Vis Sci 2010; 51: 4075-4083
  • 13 Cheung CYL, Leung CKS, Lin D. et al. Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography. Ophthalmology 2008; 115: 1347-1351 1351.e1–2
  • 14 Eriksson U, Alm A. Macular thickness decreases with age in normal eyes: a study on the macular thickness map protocol in the Stratus OCT. Br J Ophthalmol 2009; 93: 1448-1452
  • 15 Tariq YM, Li H, Burlutsky G. et al. Ethnic differences in macular thickness. Clin Exp Ophthalmol 2011; 39: 893-898
  • 16 Song WK, Lee SC, Lee ES. et al. Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain-optical coherence tomography study. Invest Ophthalmol Vis Sci 2010; 51: 3913-3918
  • 17 Liu L, Zou J, Huang H. et al. The influence of corneal astigmatism on retinal nerve fiber layer thickness and optic nerve head parameter measurements by spectral-domain optical coherence tomography. Diagn Pathol 2012; 7: 55
  • 18 Hwang YH, Lee SM, Kim YY. et al. Astigmatism and optical coherence tomography measurements. Graefes Arch Clin Exp Ophthalmol 2012; 250: 247-254
  • 19 Samarawickrama C, Pai A, Huynh SC. et al. Influence of OCT signal strength on macular, optic nerve head, and retinal nerve fiber layer parameters. Invest Ophthalmol Vis Sci 2010; 51: 4471-4475
  • 20 Fard AM, Patel SP, Sorkhabi RD. et al. Posterior pole retinal thickness distribution pattern in keratoconus. Int Ophthalmol 2020; 40: 2807-2816
  • 21 Sahebjada S, Islam FMA, Wickremasinghe S. et al. Assessment of macular parameter changes in patients with keratoconus using optical coherence tomography. J Ophthalmol 2015; 2015: 245953
  • 22 Uzunel UD, Küsbeci T, Yüksel B. et al. Does the stage of keratoconus affect optical coherence tomography measurements?. Seminar Ophthalmol 2017; 32: 676-681
  • 23 Piñero DP, Nieto JC, Lopez-Miguel A. Characterization of corneal structure in keratoconus. J Cataract Refract Surg 2012; 38: 2167-8321
  • 24 Anonymous Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group. Arch Ophthalmol 1985; 103: 1796-1806
  • 25 Leung CKS, Mohamed S, Leung KS. et al. Retinal nerve fiber layer measurements in myopia: An optical coherence tomography study. Invest Ophthalmol Vis Sci 2006; 47: 5171-5176
  • 26 Hwang YH, Yoo C, Kim YY. Myopic optic disc tilt and the characteristics of peripapillary retinal nerve fiber layer thickness measured by spectral-domain optical coherence tomography. J Glaucoma 2012; 21: 260-265
  • 27 Lee J, Kim NR, Kim H. et al. Negative refraction power causes underestimation of peripapillary retinal nerve fibre layer thickness in spectral-domain optical coherence tomography. Br J Ophthalmol 2011; 95: 1284-1289
  • 28 Choi SW, Lee SJ. Thickness changes in the fovea and peripapillary retinal nerve fiber layer depend on the degree of myopia. Korean J Ophthalmol 2006; 20: 215-219
  • 29 Langenbucher A, Viestenz A, Seitz B. et al. Computerized calculation scheme for retinal image size after implantation of toric intraocular lenses. Acta Ophthalmol Scand 2007; 85: 92-98
  • 30 Reibaldi M, Uva MG, Avitabile T. et al. Intrasession reproducibility of RNFL thickness measurements using SD-OCT in eyes with keratoconus. Ophthalmic Surg Lasers Imaging 2012; 43 (6 Suppl.): S83-S89
  • 31 Uzunel UD, Kusbeci T, Yuce B. et al. Effects of rigid contact lenses on optical coherence tomographic parameters in eyes with keratoconus. Clin Exp Optom 2015; 98: 319-322
  • 32 Brautaset RL, Rosén R, Cerviño A. et al. Comparison of macular thickness in patients with keratoconus and control subjects using the Cirrus HD-OCT. Biomed Res Int 2015; 2015: 832863
  • 33 Li K, Ting P, Lim LW. et al. Effect of Cornea Curvature on Retinal Thickness Measured Using Spectral Domain Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2019; 60: 1874
  • 34 Carmichael Martins A, Vohnsen B. Analysing the impact of myopia on the Stiles-Crawford effect of the first kind using a digital micromirror device. Ophthalmic Physiol Opt 2018; 38: 273-280
  • 35 Jonas JB, Ohno-Matsui K, Jiang WJ. et al. Bruch membrane and the mechanism of myopization: a new theory. Retina 2017; 37: 1428-1440
  • 36 Penn JS, Williams TP. Photostasis: regulation of daily photon-catch by rat retinas in response to various cyclic illuminances. Exp Eye Res 1986; 43: 915-928
  • 37 Bayraktar Bilen N, Hepsen IF, Arce CG. Correlation between visual function and refractive, topographic, pachymetric and aberrometric data in eyes with keratoconus. Int J Ophthalmol 2016; 9: 1127-1133
  • 38 Arnal E, Peris-Martínez C, Menezo JL. et al. Oxidative stress in keratoconus?. Invest Ophthalmol Vis Sci 2011; 52: 8592-8597
  • 39 Navel V, Malecaze J, Pereira B. et al. Oxidative and antioxidative stress markers in keratoconus: a systematic review and meta-analysis. Acta Ophthalmol 2021; 99: e777-e794 DOI: 10.1111/aos.14714.
  • 40 Kim WJ, Rabinowitz YS, Meisler DM. et al. Keratocyte apoptosis associated with keratoconus. Exp Eye Res 1999; 69: 475-481
  • 41 Chwa M, Atilano SR, Hertzog D. et al. Hypersensitive response to oxidative stress in keratoconus corneal fibroblasts. Invest Ophthalmol Vis Sci 2008; 49: 4361-4369
  • 42 Buddi R, Lin B, Atilano SR. et al. Evidence of oxidative stress in human corneal diseases. J Histochem Cytochem 2002; 50: 341-351
  • 43 Leonard A, Gardner SD, Rocha KM. et al. Double-pass retina point imaging for the evaluation of optical light scatter, retinal image quality, and staging of keratoconus. J Refract Surg 2016; 32: 760-765
  • 44 Röck T, Bartz-Schmidt KU, Bramkamp M. et al. Influence of axial length on thickness measurements using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2014; 55: 7494-7498