Deutsche Zeitschrift für Onkologie 2022; 54(01): 9-13
DOI: 10.1055/a-1731-6050

Abskopale Reaktion – ein unterschätzter Effekt mit großem Potenzial

Abscopal Reaction – An Underestimated Effect with Great Potential
Sebastian A. Exner
1   Strahlenzentrum Hamburg
Felix Behrens
1   Strahlenzentrum Hamburg
Fabian Fehlauer
1   Strahlenzentrum Hamburg
› Author Affiliations


Die lokale Strahlentherapie spielt in der kurativen wie palliativen Krebsbehandlung eine große Rolle. Tumoransprechen außerhalb des bestrahlten Feldes werden als abskopaler Effekt (von lat. „ab“=weg von und „scopus“=Ziel) bezeichnet. Abskopale Reaktionen wurden erstmals 1953 von Robin Mole beschrieben, der bemerkt hatte, dass bei nicht behandelten Läsionen eine Tumorregression beobachtet wurde, wenn ein Tumorbereich fokal bestrahlt wurde.

Studien haben gezeigt, dass eine Strahlentherapie die immunvermittelte Tumorerkennung verbessern kann und mit der Immun-Checkpoint-Blockade (ICB) synergistisch wirkt. Dadurch wird die Rolle der Strahlentherapie von einer lokalen Behandlung auf eine systemische ausgeweitet. Eine wirksame Immunreaktionen kann durch lokale Strahlentherapie aktiviert werden und systemische Erkrankungen bekämpfen durch eine systemische, abskopale Wirkung.


Local radiation therapy plays a major role in curative and palliative cancer treatment. Tumor responses outside of the irradiated field are referred to as the abscopal effect (from Latin “ab”=away from and “scopus”=target). Abscopal reactions were first described in 1953 by Robin Mole, who noted that tumor regression was observed in untreated lesions when a tumor area was focally irradiated.

Studies have shown that radiation therapy can improve immune-mediated tumor detection and works synergistically with immune checkpoint blockade (ICB). This expands the role of radiation therapy from a local treatment to a systemic one. Immune responses can be activated by local radiation therapy and treat a systemic disease by a systemic, abscopal effect.

Publication History

Article published online:
23 March 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • Literatur

  • 1 Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet Oncol 2009; 10: 718-726 DOI: 10.1016/S1470-2045(09)70082-8.
  • 2 Mole RH. Whole body irradiation; radiobiology or medicine?. Br J Radiol 1953; 26: 234-241 DOI: 10.1259/0007-1285-26-305-234.
  • 3 Kingsley DP. An interesting case of possible abscopal effect in malignant melanoma. Br J Radiol 1975; 48: 863-866 DOI: 10.1259/0007-1285-48-574-863.
  • 4 Ehlers G, Fridman M. Abscopal effect of radiation in papillary adenocarcinoma. Br J Radiol 1973; 46: 220-222 DOI: 10.1259/0007-1285-46-543-220.
  • 5 Nobler MP. The abscopal effect in malignant lymphoma and its relationship to lymphocyte circulation. Radiology 1969; 93: 410-412 DOI: 10.1148/93.2.410.
  • 6 Rees GJ, Ross CM. Abscopal regression following radiotherapy for adenocarcinoma. Br J Radiol 1983; 56: 63-66 DOI: 10.1259/0007-1285-56-661-63.
  • 7 Antoniades J, Brady LW, Lightfoot DA. Lymphangiographic demonstration of the abscopal effect in patients with malignant lymphomas. Int J Radiat Oncol Biol Phys 1977; 2: 141-147 DOI: 10.1016/0360-3016(77)90020-7.
  • 8 Demaria S. et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 2005; 11: 728-734
  • 9 Deng L. et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 2014; 124: 687-695
  • 10 Grimaldi AM. et al. Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology 2014; 3: e28780
  • 11 Postow MA. et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 2012; 366: 925-931
  • 12 Burnette B, Weichselbaum RR. The immunology of ablative radiation. Semin Radiat Oncol 2015; 25: 40-45
  • 13 Galluzzi L, Buqué A, Kepp O. et al. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 2015; 28: 690-714
  • 14 Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018; 359: 1350-1355
  • 15 Demaria S, Golden EB, Formenti SC. Role of local radiation therapy in cancer immunotherapy. JAMA Oncol 2015; 1: 1325-1332 DOI: 10.1001/jamaoncol.2015.2756.
  • 16 Willers H, Held KD. Introduction to clinical radiation biology. Hematol Oncol Clin North Am 2006; 20: 1-24 DOI: 10.1016/j.hoc.2006.01.007.
  • 17 Mackenzie KJ. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 2017; 548: 461-465
  • 18 Harding SM. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 2017; 548: 466-470
  • 19 Bartsch K. et al. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum Mol Genet 2017; 26: 3960-3972
  • 20 Rodríguez-Ruiz ME, Vanpouille-Box C, Melero I. et al. Immunological mechanisms responsible for radiation-induced Abscopal effect. Trends Immunol 2018; 39: 644-655
  • 21 Deng L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 2014; 41: 843-852
  • 22 Vanpouille-Box C. et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 2017; 8: 15618
  • 23 Chakraborty M, Abrams SI, Camphausen K. et al. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 2003; 170: 6338-6347
  • 24 Reits EA, Hodge JW, Herberts CA. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 2006; 203: 1259-1271
  • 25 Garnett CT, Palena C, Chakraborty M. et al. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res 2004; 64: 7985-7994
  • 26 Lhuillier C, Rudqvist N-P, Elemento O. et al. Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med 2019; 11: 40
  • 27 Galluzzi L. et al. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 2017; 17: 97-111
  • 28 Shrivastav M. et al. Regulation of DNA double-strand break repair pathway choice. Cell Res 2008; 18: 134-147
  • 29 Meng Y. et al. Radiation-inducible immunotherapy for cancer: senescent tumor cells as a cancer vaccine. Mol Ther 2012; 20: 1046-1055
  • 30 Ranoa DR. et al. Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs. Oncotarget 2016; 7: 26496-26515
  • 31 Sharma P, Allison JP. The future of immune checkpoint therapy. Science 2015; 348: 56-61
  • 32 Fessler J, Matson V, Gajewski TF. Exploring the emerging role of the microbiome in cancer immunotherapy. J Immunother Cancer 2019; 7: 108
  • 33 Konno H, Yamauchi S, Berglund A. et al. Suppression of sting signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Oncogene 2018; 37: 2037-2051
  • 34 Dovedi SJ, Adlard AL, Lipowska-Bhalla G. et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res 2014; 74: 5458-5468
  • 35 Wennerberg E, Lhuillier C, Vanpouille-Box C. et al. Barriers to radiation-induced in situ tumor vaccination. Front Immunol 2017; 8: 229
  • 36 De Mattos-Arruda L, Sammut S-J, Ross EM. et al. The genomic and immune landscapes of lethal metastatic breast cancer. Cell Rep 2019; 27: 2690-708e10
  • 37 Barsoum IB. et al. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 2014; 74: 665-674
  • 38 Dewhirst MW. et al. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 2008; 8: 425-437
  • 39 Noman MZ. et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 2014; 211: 781-790
  • 40 Voron T. et al. Control of the immune response by pro-angiogenic factors. Front Oncol 2014; 4: 70
  • 41 Barsoum IB. et al. Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: role of nitric oxide. Cancer Res 2011; 71: 7433-7441
  • 42 Moeller BJ. et al. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004; 5: 429-441
  • 43 Shaverdian N. et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol 2017; 18: 895-903
  • 44 Koller KM. et al. Improved survival and complete response rates in patients with advanced melanoma treated with concurrent ipilimumab and radiotherapy versus ipilimumab alone. Cancer Biol Ther 2017; 18: 36-42
  • 45 Dewan MZ, Galloway AE, Kawashima N. et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 2009; 15: 5379-5388
  • 46 Schaue D, Ratikan JA, Iwamoto KS, McBride WH. Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 2012; 83: 1306-1310
  • 47 Theelen WSME, Peulen HMU, Lalezari F. et al. Effect of pembrolizumab after stereotactic body radiotherapy vs pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer: results of the PEMBRO-RT phase 2 randomized clinical trial. JAMA Oncol 2019; 5: 1276-1282 DOI: 10.1001/jamaoncol.2019.1478.
  • 48 Onishi H, Shirato H, Nagata Y. et al. Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J Thorac Oncol 2007; 2: S94-S100